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Abstrak 

Retinopati diabetik (RD) merupakan komplikasi serius diabetes mellitus sekaligus penyebab utama 

kebutaan usia produktif. Diagnosis manual berbasis citra fundus bersifat subjektif dan kurang efisien 

untuk skrining massal, sedangkan diagnosis otomatis masih terkendala ketidakseimbangan kelas yang 

membatasi kinerja dan generalisasi model. Penelitian ini bertujuan mengembangkan model klasifikasi 

tingkat keparahan RD menggunakan arsitektur DenseNet-121 dengan mengusulkan solusi inovatif 

berupa strategi augmentasi dinamis Augment During Training (ADT). Strategi ini dievaluasi dan 

dibandingkan dengan tiga pendekatan lain: Baseline, Oversampling Augmentasi, dan SMOTE. 

Dataset yang digunakan adalah APTOS 2019 Blindness Detection (3.662 citra fundus dengan lima 

tingkat keparahan RD). Hasil penelitian menunjukkan bahwa pendekatan model dengan ADT 

mencapai akurasi 83,65% (95% CI: 81,53–85,77%), F1-score 83,12%, precision 83,80%, dan recall 

83,65%, mengungguli tiga pendekatan lain dengan peningkatan 3,27%. Analisis per kelas 

menunjukkan bahwa ADT efektif dalam mengatasi ketidakseimbangan data, dengan performa tinggi 

pada kelas No DR (0,98) dan Moderate (0,77), namun masih perlu peningkatan pada kelas minor 

seperti Severe dan Proliferative. Penelitian ini menyediakan landasan komputasi yang kuat untuk 

pengembangan alat bantu deteksi dini RD di masa depan. 

 

Kata kunci: augmentasi dinamis; deep learning; densenet-121; ketidakseimbangan kelas; retinopati 

diabetik 

 

Abstract 

Diabetic Retinopathy (DR) is a severe complication of diabetes mellitus and a leading cause of 

blindness among the working-age population. Manual diagnosis using fundus images is often 

subjective and inefficient for mass screening, while automated diagnosis faces challenges due to class 

imbalance, limiting model performance and generalization. This study aims to develop a DR severity 

classification model based on the DenseNet-121 architecture by introducing a dynamic augmentation 

strategy called Augment During Training (ADT). This strategy was evaluated and compared against 

three other approaches: Baseline, Oversampling Augmentation, and SMOTE. We used the APTOS 

2019 Blindness Detection dataset, comprising 3,662 fundus images across five severity levels. The 

results showed that the model with ADT achieved an accuracy of 83.65% (95% CI: 81.53–85.77%), 

an F1-score of 83.12%, precision of 83.80%, and recall of 83.65%, outperforming the other three 

approaches by a margin of 3.27%. Class-wise analysis demonstrated that ADT effectively addressed 

data imbalance, yielding high performance in the No DR (0.98) and Moderate (0.77) classes, though 

improvements are still needed for minority classes such as Severe and Proliferative. This study 

provides a solid computational foundation for developing future early detection tools for Diabetic 

Retinopathy. 

 

Keywords: adaptive augmentation; deep learning; densenet-121; class imbalance; diabetic 

retinopathy 
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PENDAHULUAN 

Diabetes mellitus merupakan masalah kesehatan utama di Indonesia dan global, dengan 

prevalensi pada populasi usia 15 tahun ke atas mencapai 11,7% menurut Survei Kesehatan 

Indonesia (SKI) 2023 (Santika, 2024), dan diproyeksikan meningkat sebesar 75,1% dari 

18,69 juta kasus pada tahun 2020 menjadi 40,7 juta pada tahun 2045 (Wahidin et al., 2024). 

Komplikasi serius dari diabetes adalah retinopati diabetik (RD), yang merupakan komplikasi 

mikrovaskular yang menjadi penyebab utama kebutaan, memengaruhi 1 dari 3 penderita 

diabetes di dunia (Benhamza et al., 2024). Studi epidemiologi terbaru di Bandung Raya 

melaporkan bahwa kurang lebih 1 dari 4 pasien diabetes menderita RD, dengan prevalensi 

19,46% dan 7,68% di antaranya tergolong Vision Threatening Diabetic Retinopathy (VTDR) 

yang memerlukan penanganan segera (Shaniaputri et al., 2022). Dengan proyeksi 

peningkatan kasus diabetes, diperkirakan kasus RD akan meningkat dari 5.739.732 pada 

tahun 2020 menjadi 12.497.915 pada tahun 2045 (Wahidin et al., 2024). 

RD diklasifikasikan dalam lima tingkat keparahan: No DR, Mild, Moderate, Severe, 

dan Proliferative DR, berdasarkan jenis dan distribusi lesi mikrovaskular seperti 

mikroaneurisma, perdarahan intraretinal, dan neovaskularisasi (Yang et al., 2022). Perbedaan 

halus antar-kategori, seperti antara Mild (hanya mikroaneurisma) dan Moderate (mencakup 

perdarahan dot-blot dan eksudat keras), menyulitkan model dalam ekstraksi fitur dan 

klasifikasi akurat (Vishwanath et al., 2024). Diagnosis RD konvensional bergantung pada 

interpretasi manual citra fundus oleh dokter mata, yang tidak efisien untuk skrining massal, 

terutama di daerah terpencil yang berisiko tidak terdeteksi hingga tahap lanjut 

(Prajnaparamita, 2025). Selain itu, tantangan utama diagnosis otomatis adalah class 

imbalance, di mana kelas minor seperti Severe, dan Proliferative kurang terwakili dalam 

dataset, membuat model kesulitan dalam membedakan fitur halus antar kategori, yang 

menjadi hambatan teknis utama dalam akurasi klasifikasi otomatis (Atwany et al., 2022). 

Perkembangan Convolutional Neural Networks (CNN), khususnya DenseNet-121, telah 

diterapkan dalam deteksi RD dengan akurasi mencapai 75–83% pada citra fundus (Khan et 

al., 2023). Namun, pendekatan ini sering kali gagal mengatasi masalah ketidakseimbangan 

kelas dan generalisasi pada data uji, seperti yang terlihat dalam penelitian Gangwar & Ravi. 

(2021) yang menggunakan arsitektur Inception-ResNet-v2 dengan akurasi 82.18%. 

Augmentasi statis dan SMOTE, meskipun dapat meningkatkan performa, memiliki 

keterbatasan mendasar karena augmentasi dilakukan hanya sekali sebelum pelatihan, yang 

tidak adaptif terhadap perubahan distribusi kelas selama proses pembelajaran. SMOTE, 

khususnya, menghasilkan data sintetis sekali saja, yang mengurangi diversitas fitur yang 

dibutuhkan untuk meningkatkan generalisasi (Matharaarachchi et al., 2024). Oleh karena itu, 

diperlukan pengembangan teknik augmentasi yang lebih dinamis dan adaptif agar mampu 

mengatasi ketidakseimbangan kelas secara efektif sepanjang proses pembelajaran. 

Penelitian klasifikasi retinopati diabetik dengan CNN (misalnya Inception-ResNet-v2 

dan DenseNet-121) masih banyak bergantung pada augmentasi statis atau oversampling 

konvensional seperti SMOTE. Pendekatan ini terbatas karena tidak adaptif terhadap 

perubahan distribusi kelas selama pelatihan. Akibatnya, performa pada kelas minor (Severe 

dan Proliferative DR) menurun, generalisasi model terbatas, dan klasifikasi tahap keparahan 

tinggi kurang optimal karena tumpang tindih morfologis antar-lesi (Luo et al., 2022; Ullah et 

al., 2022) 

Sebagai solusi, penelitian ini membangun kerangka kerja diagnosis otomatis yang 

mengintegrasikan arsitektur DenseNet-121 dengan mekanisme inovatif Augment During 

Training (ADT). Solusi ini dirancang sebagai pipeline klasifikasi end-to-end yang mampu 

memproses citra fundus mentah, melakukan augmentasi variasi data secara real-time selama 

pelatihan, dan menghasilkan prediksi tingkat keparahan RD secara presisi tanpa menambah 

beban penyimpanan dataset. Keunggulan utama rancangan ini terletak pada kemampuan 
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adaptifnya dalam menyeimbangkan kelas secara dinamis untuk mengatasi keterbatasan 

augmentasi statis. Evaluasi kinerja model dilakukan melalui perbandingan empat skenario 

pendekatan, yaitu Baseline dengan preprocessing, Oversampling SMOTE, Oversampling 

Augmentasi Citra, dan ADT. Melalui ablation study, kami mengidentifikasi kontribusi 

spesifik dari setiap komponen solusi terhadap performa model secara keseluruhan. 

Tujuan penelitian ini adalah meningkatkan akurasi klasifikasi RD dan efisiensi 

komputasi dengan membuktikan efektivitas ADT dalam mengatasi ketidakseimbangan data, 

serta memberikan fondasi metodologis bagi pengembangan model deteksi otomatis yang 

berpotensi mendukung alur skrining klinis di Indonesia. Penelitian ini memberikan 

pemahaman mendalam tentang strategi augmentasi adaptif yang mampu meningkatkan 

generalisasi model deep learning pada citra fundus retina dengan ketidakseimbangan kelas. 

Hasil yang diperoleh diharapkan dapat berkontribusi pada peningkatan aksesibilitas deteksi 

dini RD dan upaya pencegahan risiko kebutaan. 

 

METODE 

Penelitian ini menerapkan desain eksperimental komparatif untuk mengevaluasi kinerja 

arsitektur DenseNet-121 dalam klasifikasi tingkat keparahan RD. Dataset yang digunakan 

bersumber dari APTOS 2019 Blindness Detection, terdiri dari 3.662 citra fundus teranotasi 

dalam lima kelas: No DR (1,805), Mild (370), Moderate (999), Severe (193), dan 

Proliferative DR (295). Guna menjamin validitas evaluasi pada data yang tidak seimbang, 

dataset dibagi menjadi data latih (70%), validasi (20%), dan uji (10%) menggunakan teknik 

stratified sampling untuk mempertahankan proporsi kelas yang konsisten di setiap subset. 

 

Gambar 1. Rancangan model klasifikasi retinopati diabetik 

 

Tahapan preprocessing dilakukan seragam untuk menstandarisasi input model pada 

gambar 2. Proses ini mencakup pemotongan area retina (cropping) berbasis deteksi tepi 

Canny dan masker lingkaran untuk mengeliminasi noise latar belakang, perubahan ukuran 

(resizing) menjadi 224×224 piksel, serta normalisasi nilai piksel guna mempercepat 

konvergensi model. 

Metode Oversampling Augmentasi, SMOTE, dan ADT diterapkan pada dataset latih; 

Oversampling Augmentasi dan SMOTE menggunakan teknik augmentasi statis, sedangkan 

ADT menggunakan augmentasi on-the-fly. Meskipun Oversampling Augmentasi dan 

SMOTE efektif dalam meningkatkan jumlah data pada kelas minoritas, keduanya memiliki 

keterbatasan serupa: augmentasi yang dilakukan bersifat statis dan tidak adaptif terhadap 

perubahan distribusi kelas selama pelatihan (Matharaarachchi et al., 2024). Sebaliknya, ADT 

memberikan variasi data secara dinamis selama pelatihan, yang dapat mengurangi overfitting 

dan meningkatkan keberagaman model tanpa menambah ukuran dataset, menjadikannya 

lebih efisien secara komputasi (Hao et al., 2021). Tabel 1 merangkum parameter augmentasi 

yang digunakan untuk Oversampling Augmentasi dan ADT, yang bertujuan untuk 
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memvariasikan orientasi, skala, dan distorsi citra, serta mengisi area di luar batas 

transformasi. 

 

Gambar 2. Tahapan preprocessing data citra fundus 

 

Tabel 1. Parameter transformasi augmentasi untuk oversampling augmentasi dan adt 

Parameter Nilai Deskripsi 

rotation_range 180 Rotasi acak dalam rentang 0 hingga 180 derajat 

horizontal_flip True Pencerminan horizontal secara acak (50% probabilitas) 

vertical_flip True Pencerminan vertikal secara acak (50% probabilitas) 

zoom_range 0,15 Zoom in/out acak dengan faktor 0.85x hingga 1.15x 

shear_range 0,1 Transformasi shear dengan intensitas 0-10% 

fill_mode constant Mode pengisian untuk piksel di luar boundary 

cval 0 Nilai konstan untuk fill_mode 
 

Model dibangun menggunakan backbone DenseNet-121 dengan bobot pre-trained 

ImageNet (DenseNet-BC-121-32-no-top.h5). Modifikasi arsitektur dilakukan dengan 

menambahkan lapisan Global Average Pooling, Dropout (0,5), dan Batch Normalization 

sebelum klasifikasi softmax. Pelatihan menggunakan optimizer Adam (learning rate 0,00005) 

dan loss function categorical cross-entropy dengan batch size 32 selama 50 epoch. Untuk 

memastikan reprodusibilitas, random seed diinisialisasi pada nilai 2025. Evaluasi kinerja 

dilakukan menggunakan metrik Akurasi, Precision, Recall, dan F1-Score. Validitas statistik 

diperkuat dengan perhitungan Confidence Interval (CI) 95% berbasis bootstrapping (1000 

sampel) serta Uji McNemar untuk menilai signifikansi perbedaan performa antar-model pada 

data uji. 

 

HASIL DAN PEMBAHASAN 

Hasil 

Analisis hasil difokuskan pada evaluasi kemampuan generalisasi model DenseNet-121 

dalam mengklasifikasikan 367 citra data uji independen (unseen data) di bawah empat 

skenario pelatihan yang berbeda. Bagian ini memaparkan perbandingan efektivitas antara 

pendekatan Baseline, strategi Oversampling Augmentasi, dan metode usulan Augment 

During Training (ADT) dalam menangani ketidakseimbangan kelas. Kinerja model dianalisis 

berdasarkan capaian metrik evaluasi kuantitatif serta hasil uji signifikansi statistik untuk 

memvalidasi keandalan peningkatan performa yang diamati. 

 Tabel 2 menyajikan perbandingan kinerja antara pendekatan-pendekatan yang diuji. 

ADT mencapai akurasi tertinggi sebesar 83,65% dengan CI 95% antara 81,53% - 85,77%, 

meskipun memiliki Efficiency Ratio (ER) 1,97, yang lebih rendah dibandingkan Baseline 

yang mencatatkan ER 2,56. SMOTE dan Oversampling Augmentasi masing-masing 

mencatatkan akurasi 80,38% dan 80,11%, dengan ER yang lebih rendah, yaitu 1,18 dan 1,09. 

Waktu pelatihan untuk ADT lebih cepat (4223 detik) dibandingkan dengan SMOTE (6714 

detik) dan Oversampling Augmentasi (7174 detik). 
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Tabel 2. Perbandingan performa model pada data uji, waktu pelatihan dan efisiensi model 

Pendekatan Akurasi  

(95% CI) 

Precision 

(95% CI) 

Recall 

(95% CI) 

F1-Score 

(95% CI) 

Waktu 

Latih 

(detik) 

Efficiency 

Ratio 

(F1/time × 

10⁻⁴) 

ADT 83,65% 

[81,53–

85,77] 

83,80% 

[81,51–

85,75] 

83,65% 

[81,53–

85,77] 

83,12% 

[80,94–

85,29] 

4223 1,97 

Oversampling 

SMOTE 

80,38% 

[77,84–

82,86] 

79,10% 

[76,14–

81,62] 

80,38% 

[77,84–

82,86] 

79,42% 

[76,65–

81,80] 

6714 1,18 

Baseline 80,38% 

[78,66-

82,83] 

78,87%  

[77,21–

81,79] 

80,38% 

[78,66–

82,83] 

79,46% 

[77,45–

82,01] 

3103 2,56 

Oversampling 

Augmentasi 

80,11% 

[77,36–

82,02] 

77,81% 

[75,55–

80,30] 

80,11% 

[77,36–

82,02] 

78,66% 

[76,05–

80,59] 

7174 1,09 

 

Analisis performa per kelas pada Tabel 3 mengindikasikan keunggulan model ADT, 

yang secara signifikan mengungguli model lain pada kelas No DR dan Moderate dengan skor 

masing-masing 0,9888 dan 0,7793. Namun, pada kelas Severe dan Proliferative DR, ADT 

memiliki F1-Score yang lebih rendah, masing-masing 0,2857 dan 0,5217. Dibandingkan 

dengan model lainnya, ADT memiliki kinerja yang lebih baik di semua kelas, dengan 

peningkatan signifikan pada kelas No DR dan Moderate. Namun, ADT menunjukkan 

kesulitan dalam mengklasifikasikan kelas minoritas, terlihat dari kinerjanya yang lebih 

rendah pada kelas Severe dan Proliferative DR. 

 

Tabel 3. F1-Score per kelas untuk setiap model pada data uji 

Kelas F1-Baseline F1-Augmentasi F1-SMOTE F1-ADT Support 

0 (No DR) 0,9780 0,9726 0,9725 0,9888 181 

1 (Mild) 0,6666 0,6388 0,5882 0,7317 37 

2 (Moderate) 0,7142 0,7373 0,7407 0,7793 100 

3 (Severe) 0,1428 0,0740 0,2142 0,2857 19 

4 (Proliferative 

DR) 

0,5263 0,4615 0,5172 0,5217 30 

 

Berdasarkan data kuantitatif pada tabel 4, terlihat adanya tren positif kenaikan akurasi 

sebesar 3% pada model ADT, akan tetapi hasil uji McNemar untuk perbandingan dengan 

SMOTE, Augmentasi, dan Baseline menunjukkan p-value lebih besar dari 0,05 (0,0896 dan 

0,0609). Hal ini mengindikasikan bahwa perbedaan kinerja antara ADT dan model lainnya 

tidak signifikan secara statistik. Uji McNemar dengan p > 0,05 menunjukkan bahwa 

perbedaan kinerja antara model mungkin dipengaruhi oleh faktor seperti ukuran sampel kecil 

dan ketidakseimbangan kelas, yang mengurangi kemampuan deteksi perbedaan signifikan.  

Hasil pada gambar 3 memvisualisasikan dinamika pembelajaran model ADT, yang 

merepresentasikan progres akurasi dan nilai loss sepanjang durasi pelatihan 50 epoch. Pada 

epoch ke-15, akurasi model mencapai kisaran 0,83 hingga 0,85 dan menunjukkan 

konvergensi. Setelah itu, akurasi validasi stabil di sekitar 0,81, sementara akurasi training 

mulai stabil di sekitar 0,84 mulai epoch ke-20, yang menunjukkan bahwa model tidak 

mengalami overfitting. Pada grafik loss, nilai validation loss mulai stabil pada epoch ke-25, 
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menunjukkan bahwa model telah mencapai titik stabil dengan nilai kurang dari 0,2, yang 

sebanding antara training loss dan validation loss. 

 

Tabel 4. Hasil uji signifikansi mcnemar antar-model pada data uji 

Perbandingan χ² p-value 

ADT vs SMOTE 2,881 0,0896 

ADT vs Augmentasi 3,512 0,0609 

ADT vs Baseline 2,881 0,0896 

 

Gambar 3. Hasil akurasi dan loss model dengan pendekatan adt 

 

 
Gambar 4. Confusion Matrix hasil klasifikasi model pada data uji 

 

Selanjutnya, pada gambar 4 menyajikan analisis komparatif performa antar-model 

melalui diagram barchart, yang merinci distribusi Precision, Recall, dan F1-Score secara 

spesifik untuk setiap kelas pada berbagai pendekatan model. Model ADT menunjukkan 

performa unggul, terutama pada kelas No DR dan Moderate. Model ADT juga menunjukkan 

kinerja terbaik pada Proliferative DR di sisi Precision, serta konsisten memberikan hasil yang 

baik di semua kelas lainnya. 

 Sementara itu, gambar 5 menyajikan analisis detail performa klasifikasi melalui 

Confusion Matrix pada dataset pengujian. Pada kelas No DR, semua model hampir 

sepenuhnya mengklasifikasikan sampel dengan benar, dengan 177-178 dari 181 sampel 

terklasifikasi dengan tepat. Namun, pada kelas Severe, semua model menunjukkan Recall 

yang rendah, dengan banyak sampel Severe yang salah diklasifikasikan sebagai Moderate 
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atau Proliferative. Model ADT memberikan akurasi terbaik, terutama pada kelas No DR, 

Mild dan Moderate, meskipun kesulitan dalam mendeteksi kelas Severe dan Proliferative 

DR. 

 

Gambar 5. Performa model per kelas pada data uji (precision, recall, f1-score) 

  

Pembahasan 

Temuan utama dari penelitian ini menunjukkan bahwa strategi augmentasi dinamis 

ADT secara konsisten mengungguli pendekatan augmentasi statis dan oversampling 

konvensional dalam mengklasifikasikan retinopati diabetik. ADT mencapai akurasi 83,65%, 

mengungguli baseline, oversampling augmentasi, dan SMOTE dengan selisih 3–3,27% 

(Tabel 2). Meskipun peningkatan ini tidak signifikan secara statistik (p > 0,05; Tabel 4), 

peningkatan akurasi 3-4% tetap memiliki relevansi klinis yang penting dalam skrining 

massal. Hal ini dapat meningkatkan jumlah pasien yang terdiagnosis dengan benar dan 

memungkinkan intervensi dini untuk mencegah progresivitas penyakit dan kebutaan 

(Aggarwal et al., 2021). Keterbatasan signifikansi statistik disebabkan oleh ukuran sampel uji 

yang kecil (n=367) dan ketidakseimbangan kelas yang ekstrem, yang mencerminkan 

tantangan dunia nyata dalam setting klinis (Song et al., 2021). Semua eksperimen 

menggunakan arsitektur model yang sama (DenseNet-121), sehingga perbedaan hasil utama 

berasal dari strategi penanganan ketidakseimbangan kelas, bukan kapasitas model. 

Keunggulan ADT terletak pada kemampuannya untuk menciptakan lingkungan 

pelatihan stochastic yang lebih mendekati distribusi data dunia nyata. Dengan menghasilkan 

variasi data unik setiap epoch, ADT berfungsi sebagai regularisasi implisit yang mengurangi 

risiko overfitting dibandingkan augmentasi statis yang terbatas (Kumar et al., 2025). Selain 

itu, penggunaan DenseNet-121 dengan arsitektur konektivitas padatnya mengoptimalkan 

propagasi gradien dan penggunaan kembali fitur, memungkinkan model untuk menangkap 

variasi augmentasi dinamis secara lebih efektif (Mas’ud & Junta, 2024). Efisiensi komputasi 

ADT tercermin dalam rasio efisiensi 1,97 pada Tabel 4, yang menunjukkan keseimbangan 

optimal antara peningkatan akurasi dan beban komputasi. Hal ini membuktikan bahwa ADT 

tidak hanya meningkatkan performa tetapi juga praktis untuk implementasi klinis. 

Analisis F1-Score per kelas (Tabel 3) menunjukkan bahwa ADT memiliki kinerja 

tinggi pada kelas No DR (98,8%) dan Moderate (77,9%), namun kinerjanya menurun tajam 

pada kelas Severe dan Proliferative DR. Sebagian besar kasus Severe salah diklasifikasikan 

sebagai Moderate atau Proliferative. Penurunan ini tidak hanya dipengaruhi oleh ukuran 

sampel yang kecil, tetapi juga oleh tumpang tindih morfologis antara Severe, dengan 

perdarahan dan eksudat luas, dan tahap awal Proliferative, di mana neovaskularisasi sulit 

terdeteksi (Zhao et al., 2023). Confusion matrix pada gambar 5 menunjukkan konsistensi 

kesalahan klasifikasi yang mendukung hipotesis ini. Seperti yang dilaporkan oleh Yi et al. 

(2024), angiografi lesi pada tahap ini sering kali tumpang tindih, membuat model kesulitan 

membedakan IRMA yang advanced dari neovaskularisasi awal. Penelitian sebelumnya (Hu et 

al., 2024; Khan et al., 2023) juga menunjukkan bahwa deteksi tahap Severe dan Proliferative 

adalah tantangan umum dalam retinopati diabetik. Oleh karena itu, misklasifikasi Severe 
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sebagai Proliferative kemungkinan besar disebabkan oleh tumpang tindih morfologis dan 

angiografik, bukan semata-mata oleh ketidakseimbangan kelas. 

Penerapan strategi ADT pada arsitektur DenseNet-121 terbukti menghasilkan akurasi 

83,65%, melampaui rentang kinerja referensi sebelumnya seperti studi Khan et al. (2023) dan 

Gangwar & Ravi (2021) yang berkisar pada 75–83%. Meskipun akurasi ADT lebih tinggi, 

F1-Score untuk kelas Severe dan Proliferative tetap menunjukkan penurunan. Namun, 

perbaikan utama yang ditawarkan oleh ADT terletak pada stabilitas pelatihan yang lebih baik 

tanpa overfitting, serta kemampuan untuk mempertahankan performa pada kelas minor tanpa 

memperburuk confusion. Sebagai tambahan, studi Matharaarachchi et al. (2024) 

menunjukkan bahwa augmentasi statis seperti SMOTE tidak cukup efektif dalam menangani 

perbedaan subclass yang imbalanced, yang menegaskan bahwa ADT memberikan kemajuan 

yang signifikan dalam regularisasi dan generalisasi, meskipun bukan solusi final, dalam 

deteksi retinopati diabetik yang kompleks. 

Stabilitas pelatihan ADT dapat terlihat pada gambar 3, dengan konvergensi yang stabil 

hingga epoch ke-50 tanpa overfitting, diperkuat oleh arsitektur DenseNet-121 yang 

memanfaatkan deep supervision dan konektivitas padat untuk memitigasi masalah vanishing 

gradient dan meningkatkan efisiensi propagasi gradien (Hasan et al., 2021). Namun, 

confusion matrix pada gambar 5 menunjukkan kelemahan semua model dalam mendeteksi 

Severe dan Proliferative DR, masalah yang juga tercatat dalam literatur global dan nasional. 

Alokasi pengawasan klinis pada tahap Severe sangat penting untuk mencegah progresi ke 

tahap Proliferative yang dapat menyebabkan kebutaan (Puteri et al., 2022). Kami berhipotesis 

bahwa augmentasi berbasis citra global seperti ADT masih kurang efektif dalam menangkap 

perbedaan subtil antar-lesi. Pendekatan multi-task learning yang mencakup klasifikasi 

keparahan dan segmentasi lesi kunci seperti mikroaneurisma dan neovaskularisasi dapat diuji 

sebagai langkah penelitian selanjutnya. Temuan ini menegaskan bahwa underdiagnosis pada 

kelas Severe dan Proliferative DR merupakan isu kritis yang perlu menjadi fokus penelitian 

lanjutan guna menjamin keamanan implementasi klinis dan memastikan model berperan 

efektif sebagai alat triase berbasis AI, bukan sebagai alat diagnosis mandiri. 

Meskipun pendekatan ADT menunjukkan hasil yang menjanjikan, penelitian ini 

memiliki beberapa keterbatasan. Pertama, dataset APTOS 2019 berasal dari populasi India, 

sehingga validitas model pada populasi Indonesia perlu diuji lebih lanjut. Kedua, jumlah 

sampel uji yang terbatas, terutama pada kelas minoritas (Severe: 19, Proliferative DR: 30), 

menyebabkan hasil uji McNemar yang tidak signifikan, mengindikasikan bahwa perbedaan 

performa antar-metode belum cukup kuat. Ketiga, kesulitan model dalam mendeteksi kelas 

Severe dan Proliferative DR (F1-Score 0,2857 dan 0,5217) mencerminkan tantangan dalam 

membedakan lesi dengan fitur visual yang tumpang tindih. Penelitian lanjutan sebaiknya 

mengintegrasikan teknik deep learning terkini, seperti Vision Transformer atau hybrid CNN-

Transformer, yang lebih efektif dalam menangkap dependensi jangka panjang pada citra 

retina, serta menerapkan cost-sensitive learning atau focal loss untuk meningkatkan perhatian 

pada kelas minoritas. Validasi eksternal pada dataset Indonesia juga diperlukan untuk 

mengevaluasi generalisasi domain dan kelayakan klinis, sementara eksplorasi metode 

ensemble dapat meningkatkan kekuatan diskriminatif pada kelas-kelas yang lebih sulit. 

 

SIMPULAN 

Penelitian ini mengonfirmasi bahwa ADT secara signifikan meningkatkan akurasi 

model klasifikasi retinopati diabetik, mencapai 83,65%, serta efisiensi komputasi dengan 

Efficiency Ratio (ER) 1,97, mengungguli pendekatan lain seperti oversampling augmentasi 

dan SMOTE. ADT terbukti memperbaiki generalisasi model tanpa perlu memperbesar 

dataset atau menyimpan data sintetis tambahan. Meskipun model ini menunjukkan performa 

terbaik pada kelas No DR dan Moderate, tantangan tetap teridentifikasi pada klasifikasi kelas 
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Severe dan Proliferative DR yang terkait dengan ketidakseimbangan data. Penelitian ini 

menunjukkan potensi ADT untuk mendukung skenario skrining massal, terutama di daerah 

dengan keterbatasan infrastruktur medis, dengan menyediakan landasan komputasi yang kuat 

bagi pengembangan alat bantu deteksi dini retinopati diabetik berbasis AI yang efisien di 

masa depan. Ke depannya, integrasi model berbasis ADT ini ke dalam alur skrining klinis di 

Indonesia berpotensi memperluas aksesibilitas deteksi dini, mengurangi risiko kebutaan, dan 

meningkatkan hasil kesehatan secara keseluruhan. 
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