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Abstrak

Retinopati diabetik (RD) merupakan komplikasi serius diabetes mellitus sekaligus penyebab utama
kebutaan usia produktif. Diagnosis manual berbasis citra fundus bersifat subjektif dan kurang efisien
untuk skrining massal, sedangkan diagnosis otomatis masih terkendala ketidakseimbangan kelas yang
membatasi kinerja dan generalisasi model. Penelitian ini bertujuan mengembangkan model klasifikasi
tingkat keparahan RD menggunakan arsitektur DenseNet-121 dengan mengusulkan solusi inovatif
berupa strategi augmentasi dinamis Augment During Training (ADT). Strategi ini dievaluasi dan
dibandingkan dengan tiga pendekatan lain: Baseline, Oversampling Augmentasi, dan SMOTE.
Dataset yang digunakan adalah APTOS 2019 Blindness Detection (3.662 citra fundus dengan lima
tingkat keparahan RD). Hasil penelitian menunjukkan bahwa pendekatan model dengan ADT
mencapai akurasi 83,65% (95% CI: 81,53-85,77%), F'1-score 83,12%, precision 83,80%, dan recall
83,65%, mengungguli tiga pendekatan lain dengan peningkatan 3,27%. Analisis per kelas
menunjukkan bahwa ADT efektif dalam mengatasi ketidakseimbangan data, dengan performa tinggi
pada kelas No DR (0,98) dan Moderate (0,77), namun masih perlu peningkatan pada kelas minor
seperti Severe dan Proliferative. Penelitian ini menyediakan landasan komputasi yang kuat untuk
pengembangan alat bantu deteksi dini RD di masa depan.

Kata kunci: augmentasi dinamis; deep learning; densenet-121; ketidakseimbangan kelas; retinopati
diabetik

Abstract

Diabetic Retinopathy (DR) is a severe complication of diabetes mellitus and a leading cause of
blindness among the working-age population. Manual diagnosis using fundus images is often
subjective and inefficient for mass screening, while automated diagnosis faces challenges due to class
imbalance, limiting model performance and generalization. This study aims to develop a DR severity
classification model based on the DenseNet-121 architecture by introducing a dynamic augmentation
strategy called Augment During Training (ADT). This strategy was evaluated and compared against
three other approaches: Baseline, Oversampling Augmentation, and SMOTE. We used the APTOS
2019 Blindness Detection dataset, comprising 3,602 fundus images across five severity levels. The
results showed that the model with ADT achieved an accuracy of 83.65% (95% CI: 81.53-85.77%),
an Fl-score of 83.12%, precision of 83.80%, and recall of 83.65%, outperforming the other three
approaches by a margin of 3.27%. Class-wise analysis demonstrated that ADT effectively addressed
data imbalance, yielding high performance in the No DR (0.98) and Moderate (0.77) classes, though
improvements are still needed for minority classes such as Severe and Proliferative. This study
provides a solid computational foundation for developing future early detection tools for Diabetic
Retinopathy.

Keywords: adaptive augmentation; deep learning; densenet-121; class imbalance; diabetic
retinopathy
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PENDAHULUAN

Diabetes mellitus merupakan masalah kesehatan utama di Indonesia dan global, dengan
prevalensi pada populasi usia 15 tahun ke atas mencapai 11,7% menurut Survei Kesehatan
Indonesia (SKI) 2023 (Santika, 2024), dan diproyeksikan meningkat sebesar 75,1% dari
18,69 juta kasus pada tahun 2020 menjadi 40,7 juta pada tahun 2045 (Wahidin et al., 2024).
Komplikasi serius dari diabetes adalah retinopati diabetik (RD), yang merupakan komplikasi
mikrovaskular yang menjadi penyebab utama kebutaan, memengaruhi 1 dari 3 penderita
diabetes di dunia (Benhamza et al., 2024). Studi epidemiologi terbaru di Bandung Raya
melaporkan bahwa kurang lebih 1 dari 4 pasien diabetes menderita RD, dengan prevalensi
19,46% dan 7,68% di antaranya tergolong Vision Threatening Diabetic Retinopathy (VTDR)
yang memerlukan penanganan segera (Shaniaputri et al., 2022). Dengan proyeksi
peningkatan kasus diabetes, diperkirakan kasus RD akan meningkat dari 5.739.732 pada
tahun 2020 menjadi 12.497.915 pada tahun 2045 (Wahidin et al., 2024).

RD diklasifikasikan dalam lima tingkat keparahan: No DR, Mild, Moderate, Severe,
dan Proliferative DR, berdasarkan jenis dan distribusi lesi mikrovaskular seperti
mikroaneurisma, perdarahan intraretinal, dan neovaskularisasi (Yang et al., 2022). Perbedaan
halus antar-kategori, seperti antara Mild (hanya mikroaneurisma) dan Moderate (mencakup
perdarahan dot-blot dan eksudat keras), menyulitkan model dalam ekstraksi fitur dan
klasifikasi akurat (Vishwanath et al., 2024). Diagnosis RD konvensional bergantung pada
interpretasi manual citra fundus oleh dokter mata, yang tidak efisien untuk skrining massal,
terutama di daerah terpencil yang berisiko tidak terdeteksi hingga tahap lanjut
(Prajnaparamita, 2025). Selain itu, tantangan utama diagnosis otomatis adalah class
imbalance, di mana kelas minor seperti Severe, dan Proliferative kurang terwakili dalam
dataset, membuat model kesulitan dalam membedakan fitur halus antar kategori, yang
menjadi hambatan teknis utama dalam akurasi klasifikasi otomatis (Atwany et al., 2022).

Perkembangan Convolutional Neural Networks (CNN), khususnya DenseNet-121, telah
diterapkan dalam deteksi RD dengan akurasi mencapai 75—-83% pada citra fundus (Khan et
al., 2023). Namun, pendekatan ini sering kali gagal mengatasi masalah ketidakseimbangan
kelas dan generalisasi pada data uji, seperti yang terlihat dalam penelitian Gangwar & Ravi.
(2021) yang menggunakan arsitektur Inception-ResNet-v2 dengan akurasi 82.18%.
Augmentasi statis dan SMOTE, meskipun dapat meningkatkan performa, memiliki
keterbatasan mendasar karena augmentasi dilakukan hanya sekali sebelum pelatihan, yang
tidak adaptif terhadap perubahan distribusi kelas selama proses pembelajaran. SMOTE,
khususnya, menghasilkan data sintetis sekali saja, yang mengurangi diversitas fitur yang
dibutuhkan untuk meningkatkan generalisasi (Matharaarachchi et al., 2024). Oleh karena itu,
diperlukan pengembangan teknik augmentasi yang lebih dinamis dan adaptif agar mampu
mengatasi ketidakseimbangan kelas secara efektif sepanjang proses pembelajaran.

Penelitian klasifikasi retinopati diabetik dengan CNN (misalnya Inception-ResNet-v2
dan DenseNet-121) masih banyak bergantung pada augmentasi statis atau oversampling
konvensional seperti SMOTE. Pendekatan ini terbatas karena tidak adaptif terhadap
perubahan distribusi kelas selama pelatihan. Akibatnya, performa pada kelas minor (Severe
dan Proliferative DR) menurun, generalisasi model terbatas, dan klasifikasi tahap keparahan
tinggi kurang optimal karena tumpang tindih morfologis antar-lesi (Luo et al., 2022; Ullah et
al., 2022)

Sebagai solusi, penelitian ini membangun kerangka kerja diagnosis otomatis yang
mengintegrasikan arsitektur DenseNet-121 dengan mekanisme inovatif Augment During
Training (ADT). Solusi ini dirancang sebagai pipeline klasifikasi end-to-end yang mampu
memproses citra fundus mentah, melakukan augmentasi variasi data secara real-time selama
pelatihan, dan menghasilkan prediksi tingkat keparahan RD secara presisi tanpa menambah
beban penyimpanan dataset. Keunggulan utama rancangan ini terletak pada kemampuan
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adaptifnya dalam menyeimbangkan kelas secara dinamis untuk mengatasi keterbatasan
augmentasi statis. Evaluasi kinerja model dilakukan melalui perbandingan empat skenario
pendekatan, yaitu Baseline dengan preprocessing, Oversampling SMOTE, Oversampling
Augmentasi Citra, dan ADT. Melalui ablation study, kami mengidentifikasi kontribusi
spesifik dari setiap komponen solusi terhadap performa model secara keseluruhan.

Tujuan penelitian ini adalah meningkatkan akurasi klasifikasi RD dan efisiensi
komputasi dengan membuktikan efektivitas ADT dalam mengatasi ketidakseimbangan data,
serta memberikan fondasi metodologis bagi pengembangan model deteksi otomatis yang
berpotensi mendukung alur skrining klinis di Indonesia. Penelitian ini memberikan
pemahaman mendalam tentang strategi augmentasi adaptif yang mampu meningkatkan
generalisasi model deep learning pada citra fundus retina dengan ketidakseimbangan kelas.
Hasil yang diperoleh diharapkan dapat berkontribusi pada peningkatan aksesibilitas deteksi
dini RD dan upaya pencegahan risiko kebutaan.

METODE

Penelitian ini menerapkan desain eksperimental komparatif untuk mengevaluasi kinerja
arsitektur DenseNet-121 dalam klasifikasi tingkat keparahan RD. Dataset yang digunakan
bersumber dari APTOS 2019 Blindness Detection, terdiri dari 3.662 citra fundus teranotasi
dalam lima kelas: No DR (1,805), Mild (370), Moderate (999), Severe (193), dan
Proliferative DR (295). Guna menjamin validitas evaluasi pada data yang tidak seimbang,
dataset dibagi menjadi data latih (70%), validasi (20%), dan uji (10%) menggunakan teknik
stratified sampling untuk mempertahankan proporsi kelas yang konsisten di setiap subset.

> T @
Dataset Uji
1) Baseline with
I (4) ADT =i
A (1]
pr— (2) Oversampling v
f ? —r® SMOTE
> rS F—1 DenseNet-121 Model Klasifikasi
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Gambar 1. Rancangan model klasifikasi retinopati diabetik

Tahapan preprocessing dilakukan seragam untuk menstandarisasi input model pada
gambar 2. Proses ini mencakup pemotongan area retina (cropping) berbasis deteksi tepi
Canny dan masker lingkaran untuk mengeliminasi noise latar belakang, perubahan ukuran
(resizing) menjadi 224x224 piksel, serta normalisasi nilai piksel guna mempercepat
konvergensi model.

Metode Oversampling Augmentasi, SMOTE, dan ADT diterapkan pada dataset latih;
Oversampling Augmentasi dan SMOTE menggunakan teknik augmentasi statis, sedangkan
ADT menggunakan augmentasi on-the-fly. Meskipun Oversampling Augmentasi dan
SMOTE efektif dalam meningkatkan jumlah data pada kelas minoritas, keduanya memiliki
keterbatasan serupa: augmentasi yang dilakukan bersifat statis dan tidak adaptif terhadap
perubahan distribusi kelas selama pelatihan (Matharaarachchi et al., 2024). Sebaliknya, ADT
memberikan variasi data secara dinamis selama pelatihan, yang dapat mengurangi overfitting
dan meningkatkan keberagaman model tanpa menambah ukuran dataset, menjadikannya
lebih efisien secara komputasi (Hao et al., 2021). Tabel 1 merangkum parameter augmentasi
yang digunakan untuk Oversampling Augmentasi dan ADT, yang bertuyjuan untuk
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memvariasikan orientasi, skala, dan distorsi citra, serta mengisi area di luar batas
transformasi.

Lotk # Edge Crop . - Circle Crop . -

Raw Image Data Edge Cropped Image Edge Cropped + Circle
Cropped Image

Gambar 2. Tahapan preprocessing data citra fundus

Tabel 1. Parameter transformasi augmentasi untuk oversampling augmentasi dan adt

Parameter Nilai Deskripsi
rotation range 180 Rotasi acak dalam rentang 0 hingga 180 derajat
horizontal flip True Pencerminan horizontal secara acak (50% probabilitas)
vertical flip True Pencerminan vertikal secara acak (50% probabilitas)
zZoom_range 0,15 Zoom in/out acak dengan faktor 0.85x hingga 1.15x
shear range 0,1 Transformasi shear dengan intensitas 0-10%
fill mode constant Mode pengisian untuk piksel di luar boundary
cval 0 Nilai konstan untuk fill mode

Model dibangun menggunakan backbone DenseNet-121 dengan bobot pre-trained
ImageNet (DenseNet-BC-121-32-no-top.hS5). Modifikasi arsitektur dilakukan dengan
menambahkan lapisan Global Average Pooling, Dropout (0,5), dan Batch Normalization
sebelum klasifikasi soffmax. Pelatihan menggunakan optimizer Adam (learning rate 0,00005)
dan loss function categorical cross-entropy dengan batch size 32 selama 50 epoch. Untuk
memastikan reprodusibilitas, random seed diinisialisasi pada nilai 2025. Evaluasi kinerja
dilakukan menggunakan metrik Akurasi, Precision, Recall, dan F'1-Score. Validitas statistik
diperkuat dengan perhitungan Confidence Interval (Cl) 95% berbasis bootstrapping (1000
sampel) serta Uji McNemar untuk menilai signifikansi perbedaan performa antar-model pada
data uji.

HASIL DAN PEMBAHASAN
Hasil

Analisis hasil difokuskan pada evaluasi kemampuan generalisasi model DenseNet-121
dalam mengklasifikasikan 367 citra data uji independen (unseen data) di bawah empat
skenario pelatihan yang berbeda. Bagian ini memaparkan perbandingan efektivitas antara
pendekatan Baseline, strategi Oversampling Augmentasi, dan metode usulan Augment
During Training (ADT) dalam menangani ketidakseimbangan kelas. Kinerja model dianalisis
berdasarkan capaian metrik evaluasi kuantitatif serta hasil uji signifikansi statistik untuk
memvalidasi keandalan peningkatan performa yang diamati.

Tabel 2 menyajikan perbandingan kinerja antara pendekatan-pendekatan yang diuji.

ADT mencapai akurasi tertinggi sebesar 83,65% dengan CI 95% antara 81,53% - 85,77%,
meskipun memiliki Efficiency Ratio (ER) 1,97, yang lebih rendah dibandingkan Baseline
yang mencatatkan ER 2,56. SMOTE dan Oversampling Augmentasi masing-masing
mencatatkan akurasi 80,38% dan 80,11%, dengan ER yang lebih rendah, yaitu 1,18 dan 1,09.
Waktu pelatihan untuk ADT lebih cepat (4223 detik) dibandingkan dengan SMOTE (6714
detik) dan Oversampling Augmentasi (7174 detik).
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Tabel 2. Perbandingan performa model pada data uji, waktu pelatihan dan efisiensi model
Pendekatan Akurasi  Precision Recall  FI-Score Waktu  Efficiency

95%CI) (95% CI) (95% CI) (95% CI) Latih Ratio
(detik)  (Fl/time %
107
ADT 83,65% 83,80% 83,65% 83,12% 4223 1,97
[81,53— [81,51- [81,53— [80,94—
85,77] 85,75] 85,77] 85,29]
Oversampling 80,38% 79,10% 80,38% 79,42% 6714 1,18
SMOTE [77,84— [76,14— [77,84— [76,65—
82,86] 81,62] 82,86] 81,80]
Baseline 80,38% 78,87% 80,38% 79,46% 3103 2,56
[78,66- [77,21— [78,66— [77,45—
82,83] 81,79] 82,83] 82,01]
Oversampling 80,11% 77,81% 80,11% 78,66% 7174 1,09
Augmentasi [77,36— [75,55— [77,36— [76,05—
82,02]  80,30]  82,02] = 80,59]

Analisis performa per kelas pada Tabel 3 mengindikasikan keunggulan model ADT,
yang secara signifikan mengungguli model lain pada kelas No DR dan Moderate dengan skor
masing-masing 0,9888 dan 0,7793. Namun, pada kelas Severe dan Proliferative DR, ADT
memiliki F/-Score yang lebih rendah, masing-masing 0,2857 dan 0,5217. Dibandingkan
dengan model lainnya, ADT memiliki kinerja yang lebih baik di semua kelas, dengan
peningkatan signifikan pada kelas No DR dan Moderate. Namun, ADT menunjukkan
kesulitan dalam mengklasifikasikan kelas minoritas, terlihat dari kinerjanya yang lebih
rendah pada kelas Severe dan Proliferative DR.

Tabel 3. F'I-Score per kelas untuk setiap model pada data uji

Kelas FI1-Baseline FI-Augmentasi FI-SMOTE FI1-ADT Support
0 (No DR) 0,9780 0,9726 0,9725 0,9888 181
1 (Mild) 0,6666 0,6388 0,5882 0,7317 37
2 (Moderate) 0,7142 0,7373 0,7407 0,7793 100
3 (Severe) 0,1428 0,0740 0,2142 0,2857 19
4 (Proliferative 0,5263 0,4615 0,5172 0,5217 30
DR)

Berdasarkan data kuantitatif pada tabel 4, terlihat adanya tren positif kenaikan akurasi
sebesar 3% pada model ADT, akan tetapi hasil uji McNemar untuk perbandingan dengan
SMOTE, Augmentasi, dan Baseline menunjukkan p-value lebih besar dari 0,05 (0,0896 dan
0,0609). Hal ini mengindikasikan bahwa perbedaan kinerja antara ADT dan model lainnya
tidak signifikan secara statistik. Uji McNemar dengan p > 0,05 menunjukkan bahwa
perbedaan kinerja antara model mungkin dipengaruhi oleh faktor seperti ukuran sampel kecil
dan ketidakseimbangan kelas, yang mengurangi kemampuan deteksi perbedaan signifikan.

Hasil pada gambar 3 memvisualisasikan dinamika pembelajaran model ADT, yang
merepresentasikan progres akurasi dan nilai /oss sepanjang durasi pelatihan 50 epoch. Pada
epoch ke-15, akurasi model mencapai kisaran 0,83 hingga 0,85 dan menunjukkan
konvergensi. Setelah itu, akurasi validasi stabil di sekitar 0,81, sementara akurasi training
mulai stabil di sekitar 0,84 mulai epoch ke-20, yang menunjukkan bahwa model tidak
mengalami overfitting. Pada grafik loss, nilai validation loss mulai stabil pada epoch ke-25,

781



Augment During Training (ADT) pada DenseNet-121: Klasifikasi Tingkat Keparahan Retinopati
Diabetik pada Citra Fundus

menunjukkan bahwa model telah mencapai titik stabil dengan nilai kurang dari 0,2, yang
sebanding antara training loss dan validation loss.

Tabel 4. Hasil uji signifikansi mcnemar antar-model pada data uji

Perbandingan x’ p-value
ADT vs SMOTE 2,881 0,0896
ADT vs Augmentasi 3,512 0,0609
ADT vs Baseline 2,881 0,0896
o8s{ ::I:zamn f//‘/\/—/‘—”JW‘\/\’J\ T ::I:aalion
g 0.70 ( 3 )
0.60 f 06 N
0.55 M

0 10 20 30 w0 50 0 10 20 30 40 50
Epoch epoch

Gambar 3. Hasil akurasi dan loss model dengan pendekatan adt
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Gambar 4. Confusion Matrix hasil klasifikasi model pada data uji

Selanjutnya, pada gambar 4 menyajikan analisis komparatif performa antar-model
melalui diagram barchart, yang merinci distribusi Precision, Recall, dan F1-Score secara
spesifik untuk setiap kelas pada berbagai pendekatan model. Model ADT menunjukkan
performa unggul, terutama pada kelas No DR dan Moderate. Model ADT juga menunjukkan
kinerja terbaik pada Proliferative DR di sisi Precision, serta konsisten memberikan hasil yang
baik di semua kelas lainnya.

Sementara itu, gambar 5 menyajikan analisis detail performa klasifikasi melalui
Confusion Matrix pada dataset pengujian. Pada kelas No DR, semua model hampir
sepenuhnya mengklasifikasikan sampel dengan benar, dengan 177-178 dari 181 sampel
terklasifikasi dengan tepat. Namun, pada kelas Severe, semua model menunjukkan Recall
yang rendah, dengan banyak sampel Severe yang salah diklasifikasikan sebagai Moderate
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atau Proliferative. Model ADT memberikan akurasi terbaik, terutama pada kelas No DR,
Mild dan Moderate, meskipun kesulitan dalam mendeteksi kelas Severe dan Proliferative
DR.

Precision by Class Recall by Class F1-Score by Class
B e

Recall

Precision

& & & - &
¥ o o+ &

o <
DR Severity Class DR Severity Class DR Severity Class

Gambar 5. Performa model per kelas pada data uji (precision, recall, f1-score)

Pembahasan

Temuan utama dari penelitian ini menunjukkan bahwa strategi augmentasi dinamis
ADT secara konsisten mengungguli pendekatan augmentasi statis dan oversampling
konvensional dalam mengklasifikasikan retinopati diabetik. ADT mencapai akurasi 83,65%,
mengungguli baseline, oversampling augmentasi, dan SMOTE dengan selisih 3-3,27%
(Tabel 2). Meskipun peningkatan ini tidak signifikan secara statistik (p > 0,05; Tabel 4),
peningkatan akurasi 3-4% tetap memiliki relevansi klinis yang penting dalam skrining
massal. Hal ini dapat meningkatkan jumlah pasien yang terdiagnosis dengan benar dan
memungkinkan intervensi dini untuk mencegah progresivitas penyakit dan kebutaan
(Aggarwal et al., 2021). Keterbatasan signifikansi statistik disebabkan oleh ukuran sampel uji
yang kecil (n=367) dan ketidakseimbangan kelas yang ekstrem, yang mencerminkan
tantangan dunia nyata dalam setting klinis (Song et al., 2021). Semua eksperimen
menggunakan arsitektur model yang sama (DenseNet-121), sehingga perbedaan hasil utama
berasal dari strategi penanganan ketidakseimbangan kelas, bukan kapasitas model.

Keunggulan ADT terletak pada kemampuannya untuk menciptakan lingkungan
pelatihan stochastic yang lebih mendekati distribusi data dunia nyata. Dengan menghasilkan
variasi data unik setiap epoch, ADT berfungsi sebagai regularisasi implisit yang mengurangi
risiko overfitting dibandingkan augmentasi statis yang terbatas (Kumar et al., 2025). Selain
itu, penggunaan DenseNet-121 dengan arsitektur konektivitas padatnya mengoptimalkan
propagasi gradien dan penggunaan kembali fitur, memungkinkan model untuk menangkap
variasi augmentasi dinamis secara lebih efektif (Mas’ud & Junta, 2024). Efisiensi komputasi
ADT tercermin dalam rasio efisiensi 1,97 pada Tabel 4, yang menunjukkan keseimbangan
optimal antara peningkatan akurasi dan beban komputasi. Hal ini membuktikan bahwa ADT
tidak hanya meningkatkan performa tetapi juga praktis untuk implementasi klinis.

Analisis F'I-Score per kelas (Tabel 3) menunjukkan bahwa ADT memiliki kinerja
tinggi pada kelas No DR (98,8%) dan Moderate (77,9%), namun kinerjanya menurun tajam
pada kelas Severe dan Proliferative DR. Sebagian besar kasus Severe salah diklasifikasikan
sebagai Moderate atau Proliferative. Penurunan ini tidak hanya dipengaruhi oleh ukuran
sampel yang kecil, tetapi juga oleh tumpang tindih morfologis antara Severe, dengan
perdarahan dan eksudat luas, dan tahap awal Proliferative, di mana neovaskularisasi sulit
terdeteksi (Zhao et al., 2023). Confusion matrix pada gambar 5 menunjukkan konsistensi
kesalahan klasifikasi yang mendukung hipotesis ini. Seperti yang dilaporkan oleh Yi et al.
(2024), angiografi lesi pada tahap ini sering kali tumpang tindih, membuat model kesulitan
membedakan IRMA yang advanced dari neovaskularisasi awal. Penelitian sebelumnya (Hu et
al., 2024; Khan et al., 2023) juga menunjukkan bahwa deteksi tahap Severe dan Proliferative
adalah tantangan umum dalam retinopati diabetik. Oleh karena itu, misklasifikasi Severe
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sebagai Proliferative kemungkinan besar disebabkan oleh tumpang tindih morfologis dan
angiografik, bukan semata-mata oleh ketidakseimbangan kelas.

Penerapan strategi ADT pada arsitektur DenseNet-121 terbukti menghasilkan akurasi
83,65%, melampaui rentang kinerja referensi sebelumnya seperti studi Khan et al. (2023) dan
Gangwar & Ravi (2021) yang berkisar pada 75—-83%. Meskipun akurasi ADT lebih tinggi,
F1-Score untuk kelas Severe dan Proliferative tetap menunjukkan penurunan. Namun,
perbaikan utama yang ditawarkan oleh ADT terletak pada stabilitas pelatihan yang lebih baik
tanpa overfitting, serta kemampuan untuk mempertahankan performa pada kelas minor tanpa
memperburuk confusion. Sebagai tambahan, studi Matharaarachchi et al. (2024)
menunjukkan bahwa augmentasi statis seperti SMOTE tidak cukup efektif dalam menangani
perbedaan subclass yang imbalanced, yang menegaskan bahwa ADT memberikan kemajuan
yang signifikan dalam regularisasi dan generalisasi, meskipun bukan solusi final, dalam
deteksi retinopati diabetik yang kompleks.

Stabilitas pelatihan ADT dapat terlihat pada gambar 3, dengan konvergensi yang stabil
hingga epoch ke-50 tanpa overfitting, diperkuat oleh arsitektur DenseNet-121 yang
memanfaatkan deep supervision dan konektivitas padat untuk memitigasi masalah vanishing
gradient dan meningkatkan efisiensi propagasi gradien (Hasan et al., 2021). Namun,
confusion matrix pada gambar 5 menunjukkan kelemahan semua model dalam mendeteksi
Severe dan Proliferative DR, masalah yang juga tercatat dalam literatur global dan nasional.
Alokasi pengawasan klinis pada tahap Severe sangat penting untuk mencegah progresi ke
tahap Proliferative yang dapat menyebabkan kebutaan (Puteri et al., 2022). Kami berhipotesis
bahwa augmentasi berbasis citra global seperti ADT masih kurang efektif dalam menangkap
perbedaan subtil antar-lesi. Pendekatan multi-task learning yang mencakup klasifikasi
keparahan dan segmentasi lesi kunci seperti mikroaneurisma dan neovaskularisasi dapat diuji
sebagai langkah penelitian selanjutnya. Temuan ini menegaskan bahwa underdiagnosis pada
kelas Severe dan Proliferative DR merupakan isu kritis yang perlu menjadi fokus penelitian
lanjutan guna menjamin keamanan implementasi klinis dan memastikan model berperan
efektif sebagai alat triase berbasis Al, bukan sebagai alat diagnosis mandiri.

Meskipun pendekatan ADT menunjukkan hasil yang menjanjikan, penelitian ini
memiliki beberapa keterbatasan. Pertama, dataset APTOS 2019 berasal dari populasi India,
sehingga validitas model pada populasi Indonesia perlu diuji lebih lanjut. Kedua, jumlah
sampel uji yang terbatas, terutama pada kelas minoritas (Severe: 19, Proliferative DR: 30),
menyebabkan hasil uji McNemar yang tidak signifikan, mengindikasikan bahwa perbedaan
performa antar-metode belum cukup kuat. Ketiga, kesulitan model dalam mendeteksi kelas
Severe dan Proliferative DR (F1-Score 0,2857 dan 0,5217) mencerminkan tantangan dalam
membedakan lesi dengan fitur visual yang tumpang tindih. Penelitian lanjutan sebaiknya
mengintegrasikan teknik deep learning terkini, seperti Vision Transformer atau hybrid CNN-
Transformer, yang lebih efektif dalam menangkap dependensi jangka panjang pada citra
retina, serta menerapkan cost-sensitive learning atau focal loss untuk meningkatkan perhatian
pada kelas minoritas. Validasi eksternal pada dataset Indonesia juga diperlukan untuk
mengevaluasi generalisasi domain dan kelayakan klinis, sementara eksplorasi metode
ensemble dapat meningkatkan kekuatan diskriminatif pada kelas-kelas yang lebih sulit.

SIMPULAN

Penelitian ini mengonfirmasi bahwa ADT secara signifikan meningkatkan akurasi
model klasifikasi retinopati diabetik, mencapai 83,65%, serta efisiensi komputasi dengan
Efficiency Ratio (ER) 1,97, mengungguli pendekatan lain seperti oversampling augmentasi
dan SMOTE. ADT terbukti memperbaiki generalisasi model tanpa perlu memperbesar
dataset atau menyimpan data sintetis tambahan. Meskipun model ini menunjukkan performa
terbaik pada kelas No DR dan Moderate, tantangan tetap teridentifikasi pada klasifikasi kelas
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Severe dan Proliferative DR yang terkait dengan ketidakseimbangan data. Penelitian ini
menunjukkan potensi ADT untuk mendukung skenario skrining massal, terutama di daerah
dengan keterbatasan infrastruktur medis, dengan menyediakan landasan komputasi yang kuat
bagi pengembangan alat bantu deteksi dini retinopati diabetik berbasis Al yang efisien di
masa depan. Ke depannya, integrasi model berbasis ADT ini ke dalam alur skrining klinis di
Indonesia berpotensi memperluas aksesibilitas deteksi dini, mengurangi risiko kebutaan, dan
meningkatkan hasil kesehatan secara keseluruhan.
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