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Abstract 

Technological advancements in zebra cross-violation detection are necessary to address traffic rule 

violations in Indonesia, especially zebra cross violations. The You Only Look Once (YOLO) algorithm 

has been effective for detecting objects in various situations. The objective of this research is to focus 

on detecting zebra cross violations using YOLOv9, the improved accuracy and efficiency from earlier 

versions of YOLO. Consisting of two models to detect violations of the zebra crossing. The first model, 

a segmentation model called YOLO, is used for zebra cross localization, while the second model, a 

pretrained YOLO, detects the vehicles. The results of these two models are used for calculations in 

considering violations by drivers. Two datasets were used in this research. One of the datasets has 1100 

images of zebra crosses, while the other comprises 100 surveillance videos from CCTV in Yogyakarta, 

Indonesia, for testing. The findings from this study indicate that the approach enables effective and 

efficient detection and classification of zebra crossing violations with an accuracy of 93%. This research 

demonstrates the approach's enhanced ability to handle real-world scenarios with diverse camera angles 

and varying traffic conditions. Additionally, it underscores the potential for practical applications in 

automated traffic monitoring and enforcement. 
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INTRODUCTION 

The statistics of motorized vehicles in Indonesia according to the Indonesian National 

Police Traffic Corps (Korlantas Polri) show that the motorized vehicles reached a staggering 

160,652,675 in February of 2024, which has significantly increased from the previously 

recorded 148,261,817 in 2022. This represents a significant increase over the past two years. 

However, alongside this increase, the infrastructure necessary for the vehicles hasn’t improved 

and the roads have not expanded. Due to this imbalance, the traffic conditions became 

unbearable which in turn resulted in higher traffic violations as well. 

Among the traffic violations, zebra-cross violations are particularly concerning due to 

their direct impact on pedestrian safety (Nkurunziza et al., 2023). Pedestrian crossings are often 

disregarded by drivers, leading to accidents and increasing the risk to vulnerable road users. 

For instance, according to data from Korlantas Polri, 8.274 traffic accidents occurred in 2023 

involving pedestrians crossing the road. While the government has issued traffic regulations as 

regulated in Article 287 paragraph 1 of Law Number 22 of 2009 concerning Traffic and Road 

Transportation (LLAJ Law) concerning the obligation of drivers to obey command or 

prohibition signs and road markings, enforcement still remains a challenge, emphasizing the 

importance of technological solutions to detect and mitigate violations. 

Advancements in computer vision and machine learning have enabled the development 

of automated methods for traffic monitoring and rule enforcement. The YOLO (You Only 

Look Once) algorithm has proven effective in detecting objects quickly and efficiently 
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(Bochkovskiy et al., 2020). While previous studies have explored the use of YOLO for zebra-

cross violation detection, these efforts were limited by dataset scope, real-world applicability, 

and the ability to handle complex scenarios, such as multiple-object detection and varying 

camera angles. 

This research applies YOLO, a real-time object detection method that efficiently detects 

objects in a single pass, streamlining the computational process (Wang et al., 2021). YOLO 

interprets image data as a regression problem, using deep learning to generate bounding boxes, 

labels, and confidence scores for detected (Reis et al., 2023; Wang et al., 2024). It is widely 

used in applications such as traffic signal detection, pedestrian monitoring, and parking 

identification due to its speed and accuracy (Al-qanees et al., 2021; Hsu & Lin, 2021; Naftali 

et al., 2022). 

YOLOv9 offers a superior balance of speed and accuracy compared to other object 

detection algorithms, making it ideal for real-time applications like zebra-cross violation 

detection. Unlike Faster R-CNN, which uses a slower two-stage approach, YOLOv9's single-

stage design predicts bounding boxes and classes simultaneously, enabling faster inference 

(Sharma et al., 2024). While SSD provides real-time performance, it struggles with small object 

detection, an area where YOLOv9 excels due to its advanced GELAN backbone (Leng & Liu, 

2020; Yang et al., 2024; Yaseen, 2024). Compared to RetinaNet, YOLOv9 maintains similar 

accuracy but achieves higher frame rates, making it more efficient for real-world scenarios. 

Additionally, YOLOv9’s flexibility with model variants (e.g., YOLOv9-n, YOLOv9-s) allows 

users to optimize performance based on hardware capabilities, further enhancing its usability. 

In this study, we focus on developing a zebra-cross violation detection method that can 

handle real-world scenarios more dynamically using YOLOv9. The YOLOv9’s improved 

architecture offers significant improvements over earlier versions (Imran et al., 2024), 

including enhanced accuracy, faster detection speeds, and better handling of complex scenarios 

(Glučina et al., 2024). The YOLO algorithm is suitable for this research because YOLO 

performs object detection and classification in a single end-to-end drilled network, which 

allows for more efficient learning compared to other models that require multiple training 

stages (e.g., models like Mask R-CNN that require a region proposal stage (Sapkota et al., 

2024). YOLO is also known for its real-time prediction speed (Dewi et al., 2022; Lavanya & 

Pande, 2024). The model processes the entire image in a single convolutional step, making it 

very fast compared to other models that use region proposal-based approaches or pixel-wise 

segmentation (Yang et al., 2020) . 

Several studies have been conducted to address zebra-cross violation. A previous study, 

developed a zebra-cross violation detection system using the YOLOv4 algorithm (Chianyung, 

2022). This research also enabled the real-time transmission of violation detection results 

integrated with a Telegram bot. However, there are shortcomings in this study, such as the 

primary dataset used, which has been collected only on the campus of Telkom University, and 

does not reflect real traffic conditions. In addition, the system in this study was designed only 

for the detection of motorcycle violations and failed to detect multiple objects which are critical 

for addressing real-world traffic complexities. 

The study by Tonge et al. (2020) employed the Mask R-CNN segmentation model to 

detect zebra crossings and vehicles, with additional functionality to extract license plates of 

violators. While the study achieved an impressive mAP of 96% using a dataset of 150 images, 

its reliance on y-axis overlaps calculations for violation detection limited its adaptability to 

various camera angles. This approach worked effectively only with camera angles directly 

facing vehicles, making it unsuitable for diverse road intersection layouts. 

Although the methods from previous studies have successfully detected zebra-cross 

violations, further improvements are necessary to represent real-world conditions better. These 

enhancements are needed to address aspects that were not adequately handled in prior research, 
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such as varying camera angles, multi-object detection for vehicles, and more dynamic overlap 

calculations. 

The research works in three stages: zebra-cross segmentation to identify the location of 

the crosswalk, vehicle detection with bounding boxes, and violation determination using the 

segmentation mask and vehicle detection results. The primary objective of this research is to 

develop a novel approach for zebra crossing violation detection by employing two distinct 

models to address each subtask. This research is expected to enhance traffic law enforcement, 

contribute to more effective pedestrian protection, and play a key role in supporting road safety 

initiatives across urban areas. 

 

METHOD 

Our focus is on building zebra cross violation detection, shown in figure 1, processes 

input video from a CCTV camera, functioning only during the day when the traffic light is red. 

Initially, a YOLOv9 model detects and segments the zebra cross within the first 10 seconds of 

the video to address potential congestion. The segmentation mask serves as the reference 

location for detecting violations.   

 

Figure 1. Zebra cross violation detection flow process 
 

A pretrained YOLOv9 model detects vehicles (e.g., motorcycles, cars, buses, trucks) 

frame by frame, calculating the Intersection over Union (IoU) between each vehicle's bounding 

box and the zebra-cross mask. Vehicles with at least 10% overlap are flagged as potential 

violators. If overlap persists for more than 5 seconds, the vehicle is confirmed as violating the 

zebra crossing. Confirmed violations trigger frame capture for evidence.  

 

 
Figure 2. First dataset examples 

 

In this study, two types of datasets are utilized to address the subtasks of zebra-cross 

segmentation and violation classification. For zebra-cross detection and segmentation, a 

secondary dataset consisting of 1,100 zebra-cross images is sourced from the Roboflow 
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platform, as shown in figure 2. These images are masked and augmented through techniques 

such as noise addition, blurring, and rotation to improve robustness against environmental 

variations like uneven lighting or partial obstructions. The dataset is divided into 80% for 

training, 10% for validation, and 10% for testing, ensuring a balanced and effective model 

evaluation. For the violation classification task, the primary dataset consists of 100 red-light 

intersection videos recorded from 10 CCTV locations across the Special Region of Yogyakarta 

with 10 different camera angles, as illustrated in figure 3. The drawback of this dataset is that 

it only contains videos from sunny weather, so vehicle misdetection is possible. This dataset 

includes 50 labeled "Non-Violation" and 50 labeled "Violation." Videos are resized to 384x640 

resolution for uniformity. 

 

 
Figure 3. Second dataset examples 

 

Given the two distinct subtasks in this study, we employed separate evaluation metrics 

for each task. We utilised mean Average Precision (mAP), specifically mAP50 and mAP>50, 

for the zebra-cross detection and segmentation task. These correspond to the average precision 

(AP) with an Intersection over Union (IoU) threshold of 50%, and mAP with IoU thresholds 

ranging from 50% to 95%. Additionally, we calculated the mean pixel accuracy, which 

represents the average accuracy per class. This metric is derived by dividing the number of 

correctly classified pixels for each class by the total number of pixels in that class, then 

averaging across all classes. For the main task (zebra-cross violation classification), standard 

classification metrics, including accuracy, precision, recall, and F1 score, were utilized to 

assess the model's ability to correctly identify violations and non-violations. Beyond these, 

average inference time were also considered to evaluate the real-time performance of the 

program. These metrics assess the research's suitability for deployment in real-world 

applications where timely detection is critical. 

 
RESULTS AND DISCUSSION 

Results 

This experiment will involve several configuration scenarios for the zebra-cross 

segmentation subtask. The training will utilize the hyperparameter configurations specified in 

Table I, along with several fixed hyperparameters. These include an image size of 640, a batch 

size of 8, and 100 epochs.  The combinations of parameters and hyperparameters are as follows 

in table 1. 
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Table 1. Experiment configuration table 

 

Table 2. Training result on the segmentation model 

Scenario 

Using Data 
Pixel 

Accuracy 

Avg 

Inference 

Time (ms) 

Val Test 

mAP50 mAP>50 mAP50 mAP>50 

1 0.9836 0.8614 0.9833 0.8267 0.9639 33.3 

2 0.1111 0.0293 0.0698 0.0202 0.7123 35 

3 0.9829 0.8706 0.9841 0.8280 0.9529 30.6 

4 0.9882 0.8770 0.9740 0.8114 0.9653 31 

5 0.9895 0.8715 0.9752 0.8147 0.9694 55.6 

6 0.3261 0.1369 0.3709 0.1480 0.8231 57 

7 0.9907 0.8871 0.9831 0.8354 0.9425 55.6 

8 0.9899 0.8722 0.9820 0.8295 0.9660 56.1 
 

The results presented in Table 2 indicate that Scenario 1 and Scenario 5 produced the 

high performance, as both showed impressive mAP and Pixel Accuracy. Scenario 1, which 

uses YOLOv9c-seg, the AdamW optimizer, and a learning rate of 0.001, achieved excellent 

mAP on both the validation and test datasets, along with a high Pixel Accuracy of 0.9639. This 

suggests that the model from Scenario 1 is highly accurate in pixel segmentation. Meanwhile, 

Scenario 5, with the same configuration but utilizing YOLOv9e-seg, also yielded a high Pixel 

Accuracy of 0.9694. 

Scenarios 1 and 5 demonstrated the best performance in terms of mAP, and Pixel 

Accuracy, making them the optimal choices for zebra-cross segmentation. Scenario 1, using 

YOLOv9c-seg with the AdamW optimizer and a learning rate of 0.001, achieved high accuracy 

(Pixel Accuracy: 0.9639) with an efficient inference time of 33.3 ms, making it suitable for 

resource-limited systems. Scenario 5, utilizing YOLOv9e-seg with the same configuration, 

delivered the highest Pixel Accuracy (0.9694) but at a slightly higher inference time of 55.6 

ms, making it ideal for precision-critical applications. These configurations balance accuracy 

and real-time efficiency, ensuring reliable segmentation in diverse scenarios. These findings, 

consider the authors to choose the models from Scenario 1 and Scenario 5 to be utilized for 

object segmentation in the main program 

As can be seen in Figure 4, scenarios with a learning rate of 0.01 and the AdamW 

optimizer (Scenarios 2 and 6) performed poorly, showing very low mAP values on both 

validation and test datasets, along with significantly reduced Pixel Accuracy. AdamW utilizes 

weight decay regularization to mitigate overfitting, typically with a default value of 0.0005, 

which is effective when combined with a small learning rate. However, a high learning rate 

causes weight decay to impede convergence, making it challenging for the model to learn 

essential parameters and patterns from the data. This results in a substantial drop in detection 

and segmentation performance.  

Scenario Weight Optimizer Learning Rate 

1 YOLOv9c-seg AdamW 0.001 

2 YOLOv9c-seg AdamW 0.01 

3 YOLOv9c-seg SGD 0.001 

4 YOLOv9c-seg SGD 0.01 

5 YOLOv9e-seg AdamW 0.001 

6 YOLOv9e-seg AdamW 0.01 

7 YOLOv9e-seg SGD 0.001 

8 YOLOv9e-seg SGD 0.01 
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Figure 4. Visualization of segmentation model result 

 

 
Figure 5. Mask comparison between scenario 1, scenario 5, and scenario 7 

 

Although Scenario 7 demonstrates a very high mAP on both the validation and test 

datasets, with mAP50 and mAP50-95 outperforming other scenarios, the quality of the 

segmentation masks generated, as shown in Figure 5, reveals certain limitations. The masks in 

Scenario 7 appear less precise in delineating the zebra-cross boundaries compared to Scenario 

1 and Scenario 5. This suggests that while Scenario 7 excels in detecting objects at a bounding 

box level, it struggles with fine-grained, pixel-level segmentation. The use of the SGD 

optimizer, which may lead to less stable convergence in tasks requiring detailed segmentation. 

Conversely, the AdamW optimizer employed in Scenario 1 and Scenario 5 offers better 

stability and generalization, particularly for pixel-level tasks, as evidenced by the sharper and 
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more accurate segmentation masks in these scenarios. This discrepancy is further highlighted 

in Scenario 3, which also uses SGD with a learning rate of 0.001. Although it achieves a mAP 

close to Scenario 1, its lower Pixel Accuracy of 0.9529 indicates a reduced ability to produce 

precise and accurate segmentation masks. 

The main program testing will assess the main task's accuracy using the videos dataset 

in identifying whether an input video includes a violation. This evaluation will employ the 

optimal weights obtained from the first subtask experiments as the zebra-cross segmentation 

model. For vehicle object detection (second subtask), pretrained YOLO models with YOLOv9c 

and YOLOv9e weights will be utilized. The main program scenarios will integrate the top-

performing segmentation model from prior training with the YOLOv9c and YOLOv9e object 

detection models. 

 

Table 3. Main program result 

Pretrained Segmentation 

Model 

Precision Recall F1-score Accuracy 

YOLOv9c 1 0.895 0.89 0.89 0.89 

YOLOv9c 5 0.9 0.9 0.9 0.9 

YOLOv9e 1 0.905 0.9 0.9 0.9 

YOLOv9e 5 0.935 0.93 0.93 0.93 

 

Table 3 presents the testing results based on four scenarios combining the trained 

segmentation models with the pretrained YOLO object detection models. The pretrained 

weights refer to the YOLO model weights used for vehicle detection. The segmentation models 

are derived from the best-performing scenarios identified earlier, specifically Scenario 1 

(YOLOv9c-seg, LR 0.001, AdamW optimizer) and Scenario 5 (YOLOv9e-seg, LR 0.001, 

AdamW optimizer). 

The integration of YOLOv9e with the segmentation model from Scenario 5 delivers 

optimal results for violation detection. YOLOv9e provides precise and reliable vehicle 

detection, while the Scenario 5 model ensures accurate zebra cross segmentation. This 

combination enables this new method to identify violations with exceptional accuracy and 

reliability. As shown in Figure 6, the crosswalk is segmented perfectly, and vehicle detection 

yields accurate results, enabling the overlap calculation to identify violations correctly. 

 

 Figure 6. Visualization of detected violation 

 

However, future work could explore optimization techniques, such as model pruning or 

quantization, to reduce computational demands to improve the real-time applicability. Also the 

method is currently limited to functioning effectively only under sunny weather conditions. 

The accuracy of zebra cross segmentation and vehicle detection can be significantly impacted 

during night time and adverse weather, such as rain or fog, which can reduce visibility and 

complicate the detection process. This needs to be addressed in further research. 
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Discussion 

The development of zebra-cross violation detection using YOLOv9 shows promise for 

enhancing pedestrian safety and traffic enforcement. While results of the most optimal model 

of segmentation task, YOLOv9e-seg, achieved mAP50 of 0.9752, mAP>50 of 0.8147, and 

pixel accuracy of 0.9694, give a good result to the main program with the result of F1-score, 

Recall, Precision, and Accuracy of 0.93, achieving this involves trade-offs. YOLOv9e offers 

higher segmentation accuracy, making it ideal for complex scenarios but has slower inference 

times compared to the lightweight and faster YOLOv9c, which suits with limited resources or 

higher frame rate needs. 

The study's main limitation is its reliance on datasets collected under ideal conditions. 

The models perform well in sunny weather but may struggle in low-light, adverse weather, or 

varying camera angles and resolutions. Greater dataset diversity is needed to address these 

challenges and enhance performance across broader environmental and geographical contexts. 

Future research should expand the dataset to include diverse conditions, such as nighttime, 

varied weather, and different camera setups, to improve the method’s robustness. Integrating 

advanced preprocessing techniques, like contrast adjustment or denoising, could enhance 

performance under challenging conditions. Additionally, exploring optimization methods to 

reduce computational demands and incorporating features like license plate recognition would 

make it more efficient and practical for real-world applications. 

In comparison to prior research, this study highlights several improvements. The use of 

YOLOv9, with its advanced GELAN backbone, surpasses the performance of YOLOv4 and 

Mask R-CNN models in terms of both speed and accuracy. For example, Chianyung (2022)  

YOLOv4-based system achieved real-time detection but was limited to motorcycle violations 

in a single geographic location, whereas this new approach demonstrated broader applicability 

and higher precision across multiple vehicle types. Similarly, the study by Tonge et al. (2020) 

employed Mask R-CNN for zebra-cross violation detection but faced difficulties in handling 

diverse camera angles. Their approach relied heavily on y-axis overlap calculations, making it 

effective only for frontal camera views.  

By integrating YOLOv9’s segmentation techniques, this study partially overcomes these 

challenges by achieving robust performance across varying camera angles, thus improving its 

adaptability to different road layouts and surveillance setups. However, despite its strengths, 

the YOLOv9 still has limitations. While its GELAN backbone provides enhanced detection 

accuracy, it is computationally intensive, which can lead to higher inference times on resource-

constrained systems. This issue is particularly relevant for real-time applications where latency 

must be minimized. 

The contributions of this research lie in its improved real-time detection capabilities, 

adaptability to various road conditions, and robust performance across challenging scenarios, 

offering a clear advantage over earlier studies. These innovations establish a foundation for 

future work aimed at further addressing computational efficiency and environmental 

adaptability, thus advancing the field of automated traffic monitoring. 

 

CONCLUSION 

This study demonstrates the potential of YOLOv9 in improving zebra-cross violation 

detection, offering a more adaptable and efficient solution compared to previous methods. By 

addressing challenges such as diverse vehicle types and varying camera angles, the approach 

enhances real-time detection and provides practical applications for traffic law enforcement. 

While the study’s findings show promise, future improvements are needed in dataset diversity 

and computational efficiency to ensure robustness across different conditions and optimize 

real-world applicability. These advancements could contribute to the development of more 

scalable and reliable systems for intelligent transportation. 
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