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Abstract  

One of the obstacles to teaching geometric transformation is the complex procedures that 

require a broad base of prerequisite knowledge. This complexity often leads students to focus 

on rote memorization and procedural calculations instead of understanding the underlying 

context. This study aims to overcome these challenges by developing a hypothetical learning 

trajectory (HLT) and using GeoGebra to enhance visualization and understanding. The case 

study involved ten university students in Indonesia who tackled the abstraction level in the 

Transformation, Isometries, and Reflection topics. The researchers analyzed students' 

worksheets, activity observations, and learning obstacle tests to extract their geometric 

thinking. Qualitative analysis of the data revealed that seven out of ten participants met three 

of the four abstraction level indicators. The use of GeoGebra in HLT helped overcome 

epistemological obstacles. However, integrating GeoGebra into the HLT introduced a new 

issue: a GeoGebra-centric habit characterized by an excessive dependence on GeoGebra in 

solving geometric transformation problems.  
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Introduction  

The van Hiele model of geometric thinking, introduced by Pierre van Hiele and Dina van Hiele-

Geldof in the late 1950s, has long been regarded as a cornerstone in understanding how students 

learn geometry. This model outlines five hierarchical levels of geometric thought: 

Visualization, Analysis, Abstraction, Deduction, and Rigor (van Hiele, 1957). Each level 

reflects a distinct way of approaching geometric concepts, starting from recognizing shapes 

visually to understanding geometry as a formal axiomatic system (Clements & Battista, 1992; 

Jones, 2001). Moving through these levels is critical for students to develop a strong and 

comprehensive understanding of geometric principles. Among these levels, abstraction is 

particularly pivotal, as it requires students to analyze and relate properties of geometric figures 

in a structured, logical manner (Usiskin, 1982; Burger & Shaughnessy, 1986). 

Despite the importance of the abstraction level, many students struggle to progress 

beyond this stage due to significant epistemological obstacles. As identified by Kandaga, 

Rosjanuardi, & Juandi (2022a), "Transformation procedures are quite complex and involve 

various prerequisite knowledge, shifting students' cognitive focus to memorization and 

procedural calculations, thus resulting in a lack of understanding of the problem context." This 

obstacle highlights the challenge of balancing conceptual understanding with procedural 

fluency, where students may become preoccupied with calculation methods at the expense of 

grasping the broader context and meaning of geometric transformations. Addressing this 

problem is crucial for ensuring students’ success in mastering geometric thinking. 

In response to this challenge, this study aims to design a Hypothetical Learning Trajectory 

(HLT) that specifically targets the abstraction level in geometric transformations. Building 

upon prior research (Chang & Bhagat, 2015; Molnár & Lukáč, 2015; Noto, Priatna, & Dahlan, 

2019), the HLT integrates dynamic geometry software i.e. GeoGebra to bridge the gap between 

visualization and conceptual understanding. GeoGebra’s interactive capabilities facilitate 

exploration and manipulation of geometric figures, enabling students to construct a deeper 

understanding of transformations (Pech, 2012; Owusu, Bonyah, & Arthur, 2023). The HLT also 

includes tasks that encourage analytical reasoning, connecting visual results to procedural steps 

and problem contexts. By addressing the epistemological obstacle identified by Kandaga et al. 

(2022a), this research aims to investigate the effectiveness of the HLT in fostering deeper 

student understanding of transformations. 

The implementation of the HLT in this study not only facilitated students' understanding 

of complex geometric procedures but also highlighted the importance of designing instructional 

materials that address both conceptual and procedural knowledge. By employing a GeoGebra 

to Analytical Conversion Table, the study effectively bridged the gap between visual and 

analytical learning, ensuring that students could transfer their understanding from dynamic 

software to manual problem-solving contexts. 

During the implementation of the HLT, this study uncovered an additional issue: the 

emergence of GeoGebra-centric behavior among some students. This behavior, characterized 

by an overreliance on GeoGebra for solving problems, reflected an improper way of thinking 

that hindered the development of analytical reasoning skills. Students exhibiting this behavior 
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often relied solely on GeoGebra’s visual outputs without engaging critically with the underlying 

mathematical concepts or steps involved. While not entirely incorrect, this behavior mirrors a 

didactical obstacle as defined by Brousseau (2002), where the instructional tool inadvertently 

becomes a barrier to learning. The identification of GeoGebra-centric behavior provides a new 

layer of insight into the unintended side effects of integrating technology into mathematics 

education (Owusu, Bonyah, & Arthur et al., 2023; Laborde, 2006; Mendoza, Nieto-Sánchez, & 

Vergel-Ortega, 2019). 

The discovery of GeoGebra-centric behaviour, alongside the implementation of the HLT, 

represents a significant contribution to this study’s novelty. While the HLT successfully 

addressed the initial epistemological obstacle by scaffolding student understanding and 

fostering a balance between visualization and analytical reasoning, it also highlighted the need 

to carefully integrate technology in a way that avoids dependency and promotes deeper 

cognitive engagement. These findings underscore the importance of designing balanced 

instructional strategies that utilize GeoGebra as a tool for exploration without compromising 

the development of abstract and deductive reasoning (Juandi, Kusumah, Tamur, Perbowo, & 

Wijaya, 2021; Noto, Priatna, & Dahlan, 2019). This study not only contributes to the field of 

mathematics education by providing practical solutions for common learning obstacles but also 

advances discussions on the implications of technology integration in classrooms. 

Methods  

A case study research was conducted on ten subjects who were students at one of the 

universities in Indonesia in late 2023. The research subjects consisted of two males and eight 

females with cumulative grade point averages (academic abilities) ranging from 2.5 to 3.5 on a 

4-point scale. All subjects had good proficiency in using digital technology and GeoGebra. The 

subjects underwent tests for learning obstacles before and after the implementation of the 

Hypothetical Learning Trajectory (HLT). The tests for learning obstacles were conducted to 

measure the achievement of indicators of geometric thinking levels. 

Data in this study were collected through two primary methods: observation and 

epistemological obstacle test. Observations were conducted during the implementation of the 

learning activities designed using the Hypothetical Learning Trajectory (HLT). This allowed 

researchers to closely monitor how students engaged with the HLT, particularly their 

interactions with GeoGebra and their approaches to problem-solving at the abstraction level. 

The observations focused on identifying patterns in students’ reasoning, their ability to 

transition between visual and analytical thinking, and any instances of GeoGebra-centric 

behavior. In addition to the observations, an epistemological obstacle test was administered to 

evaluate students' abilities across the five indicators of mathematical literacy. The test was 

designed to identify specific challenges faced by students, such as their reliance on procedural 

memorization and their capacity to relate solutions to the problem context. These 

complementary methods ensured a comprehensive understanding of how the HLT addressed 

both the epistemological obstacles and the newly identified GeoGebra-centric behavior. 
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The main goal of this study was to describe how to overcome epistemological obstacles 

in the learning of transformation geometry as presented by Kandaga, Rosjanuardi, & Juandi 

(2022a) within a HLT. To achieve this goal, the data obtained were processed qualitatively 

using the analysis techniques of Miles, Huberman, & Saldana (2014). These analysis techniques 

consisted of three stages: data reduction, data display, and conclusion drawing. Additionally, 

the processing and organization of qualitative data were facilitated using NVIVO 12, which 

allowed for efficient coding, categorization, and visualization of the observational and test data, 

ensuring systematic and in-depth analysis. 

Data reduction was performed for the indicators that were successfully identified, 

adopting Harel's (2008) concept of Way of Thinking (WoT). The subjects' responses to the 

learning obstacles test were grouped based on the similarity of the WoT they presented. Data 

reduction was then carried out on the WoT that were not suitable for solving the problems. The 

WoT that were appropriate in addressing the issues were further grouped based on the indicators 

of the van Hiele levels of geometric thinking they achieved. 

The process continued to the data display stage. These groups of WoT, subsequently 

referred to as categories, were connected to one another with categories at other levels of van 

Hiele’s model thinking, thus producing a description resulting from these connections. These 

connections were summarized to answer the research question in this study. 

Results  

Hypothetical learning trajectory design 

The Hypothetical Learning Trajectory (HLT) in this study was specifically designed for the 

abstraction level, and focused on the material covering the reflection of objects across a straight 

line. The design of the HLT was intended to address the epistemological obstacles at Level-3 

(Abstraction) identified by Kandaga et al. (2022a), which were “Transformation procedures are 

quite complex and involve various prerequisite knowledge, shifting students' cognitive focus to 

memorization and procedural calculations, thus resulting in a lack of understanding of the 

problem context”. 

These obstacles were divided into two issues: (1) a shift in cognitive focus towards 

memorization and procedural tasks, and (2) complex reflection procedures at the abstraction 

level. The strategies to address these issues were also divided into two parts, as shown in Figure 

1. 

The Reflection material, which was divided into two Hypothetical Learning Trajectories 

(HLTs), was due to the different strategies employed to address the epistemological obstacles 

that emerged. The strategy used to address issue (1) involved using GeoGebra to provide 

visualization and to assist the understanding of every detail of the reflection procedures. 

Meanwhile, for issue (2), a conversion table for the Reflection procedures was provided using 

GeoGebra and the reflection procedures analytically. A more comprehensive HLT for both 

issues is displayed in Table 1 and Table 2. 
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Figure 1. Strategy to overcome epistemological obstacle on the abstraction level 

 

Table 1. HLT for the abstraction level in the first session 

Phase Learning Goals Hypothetical Learning Process 

Information Recognizes and 

visualizes reflection 
into a straight line 

Students examines definition of reflection 

and explores its visualization through 
GeoGebra pre-made content. 

Directed 

Orientation 

Organizes properties of 

reflection 

1) Examining properties of reflection by 

exploring its visualization through 
GeoGebra pre-made content 

Explicitation 2) Describes identification results of 

reflection properties 

3) Formulates reflection procedures from 

the activities 

Free 

Orientation 

The GeoGebra 

Procedure of Reflection 

Students evaluates to tests the procedures to 

solve reflection problem by using GeoGebra 

Table 1 presents the first session. The instruction emphasized efforts to address the shift 

in students' cognitive focus that often moved from conceptual understanding to memorization 

and procedural tasks. For this purpose, effective tools for visualization and calculation were 

required. Tools such as GeoGebra had been proven capable of providing interactive and 

intuitive visualizations, which helped students deeply understand the concepts of geometric 

transformations. By using GeoGebra, students were able to manipulate objects and see the 

transformation results in real-time, which strengthened their understanding of geometric 

properties and involved procedures. Recent research by Owusu et al. (2023) showed that the 

Visualization:  
1. Recognizing Transformation 
2. Sketching with GeoGebra 

Analysis:  
1. Recognizing Transformation by its properties 
2. Gathering properties from observing, sketching, 

and other activities 

Abstraction:  
1. Organizes idea of transformation (reflection) 

based on various properties, figures, and 
structures 

2. Reflect objects based on structured procedures 

Epistemological Obstacle: 

Transformation procedures are quite complex and 
involve various prerequisite knowledge, shifting 
students' cognitive focus to memorization and 
procedural calculations, thus resulting in a lack of 
understanding of the problem context 

Shifting cognitive focus:  
How to counter: students need 
to engage the mathematical 
concept of reflection with basic 
visualization and analysis by 
using GeoGebra  

Complex abstraction procedures:  
How to counter: use of conversion 
table from GeoGebra procedures 
into analytical procedures  
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use of visual aids like GeoGebra could enhance students' conceptual understanding and reduce 

reliance on memorization and procedural calculations. 

Besides visualization, accurate calculation was also an essential element in overcoming 

the obstacle. GeoGebra provided calculation features that allowed students to compute 

transformation results quickly and accurately, enabling them to mathematically validate their 

visualizations. This not only improved the accuracy of calculations but also ensured that 

students remained focused on conceptual understanding rather than getting caught up in manual 

calculation errors. Research by Mendoza et al. (2019) confirmed that the integration of 

calculation tools in mathematics instruction helped students better understand abstract concepts 

and apply them in various contexts. Thus, the use of visualization and calculation tools such as 

GeoGebra was crucial for maintaining students' cognitive focus on conceptual understanding 

in the learning of geometric transformations. 

Table 2. HLT for the abstraction level in the second session 

Phase Learning Goals Hypothetical Learning Process 

Information Recalls the GeoGebra reflection 

procedures and understands 

current learning goals 

Examines The GeoGebra to Analytics 

Table 

Directed 

Orientation 

Excels at converting GeoGebra 

procedure of reflection into 

analytical reflection procedure 

Filling the worksheet contained with The 

GeoGebra to Analytics Table 

Explicitation 
Formulates analytical procedure 

of reflection 

Describes their findings about the 

reflection procedures 

Free 

Orientation 

Understands every step of the 

analytical procedure 

Implements and evaluates the analytical 

procedure of reflection into various 

problems which design to tests detailed 

understanding 

Integration Understands the essence of 

abstract concepet of reflection 

Summarizes the procedure of reflection 

 

The second session, presented in Table 2, aimed to transform the conceptual 

understanding of reflection acquired in the first session into more detailed and complex 

analytical procedures. As previously mentioned, reflection procedures are complex and require 

various prerequisite materials. This complexity often leads to students not understanding the 

bigger picture of reflection itself (Kandaga et al., 2022a). Students merely follow each 

procedural step without comprehending the main concept and the benefits of what they are 

doing. Therefore, scaffolding is needed to convert the conceptual understanding of reflection 

into a more analytical process while maintaining the procedural direction in line with the 

students' concepts. The study used a GeoGebra to Analytical Conversion Table, which served 

as scaffolding to overcome this learning obstacle. 

The GeoGebra to Analytical Conversion Table divided into three main sections: 1) 

GeoGebra Instructions, this section provides step-by-step instructions on how to use GeoGebra 

for performing specific geometric transformations; 2) Manual Analytical Procedures, this 

section details the procedural steps for performing the same task manually, ensuring students 
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understand the underlying mathematical concepts; 3) Manual/Hand Sketches, this section is for 

students to manually sketch the geometric transformations. It helps reinforce their 

understanding by visually drawing the steps and outcomes, such as plotting points and reflecting 

them across a line. The GeoGebra to Analytical Conversion Table presented in Figure 2.  

 

Figure 2. The GeoGebra to analytical conversion table 

The structured format helps in converting procedural knowledge gained from GeoGebra 

into a deeper conceptual understanding of geometric transformations. This method ensures that 

students are not only able to perform the transformations but also understand the 'why' and 'how' 

behind them. By combining digital instructions, analytical procedures, and manual sketches, 

the worksheet addresses different learning styles, catering to visual, analytical, and kinesthetic 

learners. This multi-modal approach is supported by educational research, which indicates that 

using various methods can enhance understanding and retention of mathematical concepts 

(Owusu et al., 2023; Confrey et al., 2014). 

Students’ performance 

The results of the HLT implementation in both sessions indicated that students were able to 

understand the reflection procedure well and create accurate visualizations of the reflection 

concept with structured procedures using GeoGebra. The data analysis was conducted with the 

assistance of NVivo, coding processes were applied to address the three abstraction indicators 

in the visual-GeoGebra aspect, namely: (1) descriptive coding to capture explanations of the 

transformation based on its properties, (2) pattern coding to analyze reasoning using the 

properties and structure of the transformation, and (3) thematic coding to organize ideas or 

concepts based on the relationships among various properties, images, and transformation 

structures. Out of ten subjects, seven met all these indicators. The coding results for these three 

indicators presented in Figure 3 below.  

Instruction for  
GeoGebra Syntax 

Manual/ hand Sketches 

Detailed analytical 
procedures 
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Figure 3. The number of subjects that meet the three abstraction indicators 

The concept of reflection was then extended to the analytical aspect. There was only one 

indicator in this aspect, which was constructing reflections using mathematical procedures. This 

indicator was the primary indicator at the abstraction level, whereas the visual aspect provided 

by GeoGebra and all its indicators served merely as scaffolding to achieve this indicator. To 

reach this indicator, subjects were asked to complete the conversion table from GeoGebra 

procedures to analytical procedures. Their proficient understanding of reflection procedures 

using GeoGebra was then converted into various mathematical calculations. Through this 

conversion process, the subjects did not lose direction in performing the analytical reflection 

procedures and gained a deeper understanding of the reasons behind these procedures. Thus, 

the scaffolding involved presenting the outer shell of reflection through visualization and 

procedural framework, followed by detailed analytical procedures with the previously 

understood procedural framework. 

The implementation results for the analytical aspect of the reflection material showed that 

seven out of ten subjects successfully met the above-mentioned indicator. These seven subjects 

managed to convert their understanding of visual reflection procedures in GeoGebra into 

analytical reflection procedures. Some of the subjects' work was very detailed, even providing 

visualizations by replicating the images they created in GeoGebra. The use of the conversion 

table also served as one of the scaffolding methods in achieving the indicator at the abstraction 

level. With several scaffolding methods in place, it was proven that the subjects could meet the 

indicators and overcome epistemological obstacles at the abstraction level. Figure 4 displays 

the best response during the HLT implementation. 
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Figure 4. Best response during the HLT implementation on filling the GeoGebra conversion 

table and overcoming the epistemological obstacles 

Observing the students’ positive responses, demonstrated by their good performance 

using the GeoGebra conversion table, a learning obstacle test was then conducted. In order to 

assess the achievement of the fourth abstraction indicator, which involves constructing 

reflection through a systematic procedure, students were asked to describe and calculate 

mathematically based on the elements they successfully identified. This method would connect 

their understanding of the elements in reflection with the procedures they needed to perform. 

Students would transform geometric shapes into an abstract mathematical model according to 

its elements, solve it mathematically, and then convert it back into geometric form. The 

instructions provided for the Manual or Analytical Calculation section were as presented in 

Figure 5. 

 

Translation: 

Determine the point 𝑷′ = 𝑴𝒔(𝑷) by constructing the 

midpoint formula between two points and using the 

intersection point created in step 4 as the midpoint 

between point P and P′ 

 

Figure 5. Test instructions for the manual or analytical calculation section at the abstraction 

level 

Students were also asked to manually sketch the problem to provide a connection between 

the visualization of the elements of reflection and their abstraction. In this way, students fully 

understood each step constructing the reflection. 

GeoGebra Procedures 

Abstraction 

Visualization 
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Translation: 

Sketch: 

1. Point and the mirror line 

2. Normal line 

3. Intersection point between the 

mirror line and the normal line 

4. The reflection result 

Figure 6. Test instructions for the manual sketch section 

The test instructions were presented in Figure 6, and these instructions were made in the 

same conversion table as the analytical calculation instructions. The conversion table included 

instructions to write the GeoGebra syntax; however, this part was deemed unnecessary for the 

abstraction level test instrument.  

Based on the analysis of the learning obstacles test, out of the 7 subjects who met the 

previous three indicators, all succeeded in meeting the fourth indicator. The results presented 

in Figure7 clearly demonstrate the effectiveness of the Hypothetical Learning Trajectory (HLT) 

designed to address the epistemological obstacles encountered by subjects in the topic of 

reflections in geometric transformations. The blue-colored scores, representing the group 

guided by the HLT, show consistent and significant improvement across levels. This 

progression indicates that the carefully constructed learning path successfully supported 

students in overcoming their initial conceptual difficulties. For instance, the highest scores in 

the blue group increased steadily from 2 at Level 1 to 14 at Level 5, while even the lowest 

scores showed a marked improvement, rising from 1 at Level 1 to 8 at Level 5. These results 

validate that the HLT provided not only a structured framework for students to engage with 

complex concepts but also scaffolded their understanding, enabling them to transition from 

basic comprehension to higher-order problem-solving in this domain. 

In contrast, the red group, which did not follow the HLT, exhibits stagnation and 

inconsistency in their performance. Their scores peaked at Level 3 and then declined, with some 

subjects failing to produce correct solutions by Level 5. This stark difference reinforces the 

value of a well-structured HLT in addressing epistemological obstacles that often hinder 

students' ability to connect abstract mathematical concepts with practical applications. The 

HLT’s intentional sequencing of tasks and emphasis on gradual conceptual development 

effectively bridged gaps in students’ prior knowledge, allowing them to overcome the common 

misunderstandings in geometric reflections. These findings strongly suggest that integrating a 

well-designed HLT into mathematics education can significantly enhance learning outcomes, 

especially in areas where epistemological challenges are prevalent. 

If a broader analysis is conducted involving several other levels of geometric thinking in 

the van Hiele model, it would be found that the abstraction level has the steepest learning curve 

and is a key determinant of proficiency at other levels. Figure 7 shows the achievements of 

several subjects against the indicators at each level of geometric thinking. 
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Figure 7. Wider review of students' performance in the van Hiele’s levels of geometric 

thinking 

 

In Figure 7, the blue and red graphs each represent two subjects with the best and worst 

indicator fulfillment, respectively. Based on the graph, it is evident that Level-3 (abstraction) 

had the steepest learning curve. Subjects who underwent learning without using the HLT 

showed poor results. The red line graph indicates that both subjects failed to meet the indicators 

for levels beyond abstraction. In contrast, subjects who underwent learning with the 

implementation of the HLT were able to follow the indicators at subsequent levels successfully. 

The connection between these ability levels is crucial because each level develops its own 

terminology and way of thinking (van Hiele-Geldof & van Hiele, 1984). 

In the designed HLT, although the focus was on the abstraction level indicators, it also 

included the use of GeoGebra to provide visualization of the problems. This visualization 

process was also one of the scaffolding methods in constructing participants' conceptual 

understanding. As believed by many researchers, such as Jones (2005), Clements & Battista 

(1992), and van Hiele-Geldof (1957), visualization is the initial perception in the concept 

construction process. Therefore, the HLT design was intended to integrate GeoGebra into 

learning activities that directed participants to perform a series of deductions. Moreover, the 

designed HLT also required participants to analyze, reason, and conclude the concepts being 

constructed. 
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Discussion  

HLT and students’ achievement 

The findings from this study strongly affirm that the Hypothetical Learning Trajectory (HLT) 

successfully addressed the epistemological obstacle previously identified in the topic of 

reflections in geometric transformations. The obstacle, as described by Kandaga, et al. (2022a) 

and Noto, Priatna, & Dahlan (2018, 2019), involves the complexity of transformation 

procedures that require various layers of prerequisite knowledge. This complexity often shifts 

students' cognitive focus to memorization and procedural calculations, resulting in a lack of 

understanding of the problem's context. The HLT, designed with a clear focus on scaffolding 

learning and integrating visual tools like GeoGebra, enabled students to overcome these 

challenges by fostering a deeper conceptual understanding. 

The analysis of the test results showed that seven subjects who met the first three 

indicators successfully fulfilled the fourth indicator. This progression validates that the HLT 

not only provided a structured pathway but also effectively addressed the cognitive obstacle 

students faced when engaging with geometric transformations. These findings align with prior 

research emphasizing the importance of structured learning trajectories in overcoming 

epistemological obstacles (Kandaga et al., 2022a; Noto, Priatna, & Dahlan, 2018; Karso, 2016). 

The HLT’s design, particularly its focus on the abstraction level (Level 3), was critical in 

overcoming these obstacles. Without the HLT, as evidenced by the red group's performance, 

students struggled to progress beyond Level 3, with their scores stagnating or declining at 

higher levels. In contrast, subjects guided by the HLT successfully navigated through 

abstraction and demonstrated proficiency at subsequent levels. This aligns with van Hiele-

Geldof & van Hiele’s (1984) theory, which highlights the importance of structured cognitive 

transitions between levels. The integration of GeoGebra within the HLT provided dynamic 

visualizations of the problems, which helped students connect abstract concepts with their 

practical implications, as supported by Jones (2005) and Clements & Battista (1992). 

The visualization process, as highlighted in the HLT, played a pivotal role in addressing 

the focus on memorization and procedural calculations. GeoGebra served as a scaffold that 

allowed students to explore geometric reflections dynamically, fostering an intuitive 

understanding of the transformations. This approach is supported by previous findings, which 

argue that visualization is a fundamental component in constructing mathematical concepts 

(Jones, 2001; 2005; Mendoza, Nieto-Sánchez, & Vergel-Ortega, 2019). Moreover, students' 

varied use of GeoGebra—ranging from replicating the outputs, creating manual sketches, to 

using GeoGebra-generated answers—demonstrated that the tool was highly effective in 

addressing obstacles at both the visualization and abstraction levels (Noto, Priatna, & Dahlan, 

2019; Kurniawati & Mahmudi, 2019). 

The HLT also emphasized reasoning, deduction, and contextual analysis, which helped 

students shift from procedural problem-solving to a deeper understanding of the problem 

context. This was evident in the subjects’ ability to analyze patterns, deduce mathematical 

relationships, and relate their solutions to the real-world context. These findings resonate with 

research from Juandi et al. (2021), Chang & Bhagat (2015), and Molnár & Lukáč (2015), which 
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highlight the importance of reasoning and critical thinking in overcoming cognitive obstacles. 

By integrating both visual and analytical components, the HLT helped students construct 

solutions that were not only mathematically accurate but also meaningful in the context of the 

original problem. 

To summarize, the findings underscore that the HLT successfully overcame the 

epistemological obstacle by shifting students’ cognitive focus from rote memorization to a 

meaningful understanding of reflections in geometric transformations. This achievement 

supports prior research (Pech, 2012; Noto & Priatna, 2018) and highlights the value of 

integrating visualization tools and carefully sequenced tasks into learning trajectories. The 

success of this HLT further reinforces its potential as a model for addressing similar 

epistemological challenges in other mathematical topics. 

Side effects of using GeoGebra at the abstraction level 

Despite the various advantages of using GeoGebra in learning, it also introduced new learning 

obstacles, particularly at the abstraction level of geometric transformations. In certain problems, 

participants exhibited a GeoGebra-centric behavior, where they focused excessively on solving 

problems using GeoGebra without critically analyzing the mathematical reasoning behind their 

solutions. In certain problems, participants appeared to focus excessively on solving problems 

using GeoGebra. This GeoGebra-centric behavior constituted an improper way of thinking. 

Such a condition could be considered a learning obstacle stemming from didactics. Like other 

improper ways of thinking, GeoGebra-centric was not entirely wrong, but it could be 

disadvantageous for subsequent thought processes. 

In addition to the reflection problems that were directed to be solved analytically, the 

learning obstacle test also included similar problems but allowed students freedom in their 

solution process. Initially, this was intended to measure the attachment of the analytical 

procedures they had understood with the visualization and concept of reflection. Figure 8 shows 

the problem given in the test. The test instrument is also available on Appendix 1.  

 
Figure 8. Problem given to measure the attachment of analytical procedure 

Translation of Figure 8: 

Suppose the line r is a mirror with the equation 𝑟: 2𝑥 + 7𝑦 = 0. A line 𝑔: 𝑥 + 𝑦 = 5 is then 

reflected over the line 𝑟, resulting in 𝑀r(𝑔). 

a) Draw the line r (mirror), 𝑔 (object being reflected), and 𝑀r(𝑔) (reflection result) 

b) Describe each step you used to determine the reflection. 

GeoGebra-centric behavior was particularly evident in the task where students were asked 

to reflect the line 𝑔: 𝑥 + 𝑦 = 5 over the line 𝑟: 2𝑥 + 7𝑦 = 0. Instead of using mathematical 

reasoning to describe each step in determining the reflection, many participants relied entirely 

on GeoGebra's output to generate the result, bypassing the need to engage with the underlying 
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mathematical concepts. This GeoGebra-centric approach reflects what Brousseau (2002) 

describes as a didactical obstacle, which arises from how the tool was integrated into the 

learning process. 

Such behavior does not necessarily indicate that the students’ way of thinking was entirely 

wrong. GeoGebra-centric tendencies stem from the efficiency and accessibility of the software, 

which aligns with its purpose as a tool for visualization and exploration (Shadaan & Leong, 

2013; Juandi et al., 2021). However, this reliance can hinder deeper conceptual understanding 

and abstract reasoning, which are essential at higher levels of mathematical thinking, such as 

those described in van Hiele-Geldof's levels of geometric thought (van Hiele-Geldof & van 

Hiele, 1984). For example, in the task above, while students were able to draw the reflected line 

𝑀𝑟(𝑔) accurately using GeoGebra, many failed to articulate the steps they followed 

mathematically, such as finding the perpendicular from a point to the line or solving for the 

intersection points. This over-reliance on GeoGebra resulted in incomplete explanations and a 

lack of procedural fluency, which are critical for constructing mathematical arguments and 

proofs. 

The analysis of the students' answers revealed a strong dependence on GeoGebra. As 

shown in Figure 9, students sketched the reflection result without including several key 

elements required for manually drawing lines, suggesting that the answers were likely created 

using GeoGebra. The absence of some reflection elements in the students' sketches also 

indicated that the sketches were made with the aid of GeoGebra. Instead of providing manual 

calculations or specific reflection procedures, some students included the GeoGebra procedures 

in their sketching process. 

One of the main negative impacts of excessive use of GeoGebra is students' dependence 

on the visualization tool. This dependence can hinder their ability to deeply understand 

geometric concepts without technological assistance. Students may become less skilled in 

performing manual analysis and calculations, which are crucial for understanding the 

fundamentals of mathematics (Kandaga, 2022b).  

Upon examining the responses of some subjects who did not fully meet the fourth 

abstraction indicator in Figure 9, two of the subjects (a) and (c) provided correct reflection 

results but did not include supporting elements of the manual reflection procedure, such as 

constructing the normal line, its intersection point, or testing points to create the straight line. 

Meanwhile, (c) explicitly stated that the results were obtained using GeoGebra syntax. 

  

 (a)  (b) 
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Translation: 

b). Steps: 

1. Input the equation line 𝑟 ∶  2𝑥 + 7𝑦 = 0 and 

𝑔: 𝑥 + 𝑦 = 5 

2. After obtaining the two lines from the 

equations, we will find the reflection of line 

𝑔 over line 𝑟 by using the toolbar -> reflect 

of line, then click on lines 𝑔 and 𝑟. 

3. In this way, we will obtain the result of the 

reflection 

(c)  

Figure 9. Student responses indicating GeoGebra-centric characteristics  

The excessive use of GeoGebra could lead students to rely on instant visualization rather 

than developing abstract and deductive thinking skills. The ability to think abstractly and 

perform deductions is a key skill in mathematics, necessary for solving more complex 

problems. When students become accustomed to the visualizations provided by GeoGebra, they 

may become less trained in developing logical and coherent mathematical arguments (Laborde 

et al., 2002). As shown in Figure 9 (b), where the student attempted to sketch manually but then 

failed due to several errors in determining the intersection points between the mirror line and 

the normal line. 

Research on the integration of technology in mathematics education highlights similar 

risks. According to Garcia (2023), while digital tools like GeoGebra enhance visualization and 

problem-solving, they can also create new obstacles, such as a lack of balance between 

procedural and conceptual understanding. Similarly, Clements & Battista (1992) emphasized 

that while technology can scaffold learning, it may inadvertently encourage students to 

prioritize results over the reasoning process. In this case, GeoGebra’s ability to provide 

immediate and accurate visualizations of reflections may have led students to focus more on 

the output rather than engaging with the reflection procedure itself. As a result, the abstraction 

level—where students should be developing formal reasoning and constructing arguments—

was not fully achieved by some participants. 

The findings regarding the side effects of GeoGebra in learning geometric 

transformations contribute to how we should design integrated learning with digital technology. 

Although GeoGebra is a highly useful tool in learning geometry, it is important for educators 

to ensure that its use is not excessive. Educators must balance the use of technology with the 

development of students' analytical and deductive skills. In this way, students can develop a 

more holistic and in-depth understanding of geometric concepts and the ability to apply them 

in various contexts. 
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Conclusion  

The implementation of HLT for the geometric thinking model at the abstraction level in 

teaching geometric transformations demonstrated significant positive impacts, successfully 

addressing the research question of overcoming epistemological obstacles. Based on the 

findings, seven out of ten participants met three out of the four indicators at the abstraction 

level. With the support of GeoGebra, the HLT facilitated students’ understanding of geometric 

transformations and enabled all participants to complete the abstraction process and overcome 

obstacles. These results indicate that HLT effectively supported students’ progression in 

geometric thinking and addressed challenges at the abstraction level. However, the study also 

revealed the emergence of GeoGebra-centric behavior, in which participants overly relied on 

GeoGebra to solve problems and understand transformation concepts.  This dependence on 

GeoGebra can be problematic, as it may hinder the development of the deeper conceptual 

understanding and critical thinking skills necessary for mastering geometric transformations. 

The emergence of these side effects represents a didactic obstacle that arises from the teaching 

methods or tools used rather than from the content itself. When the necessary didactic 

prerequisites, such as balancing technology use with traditional problem-solving skills, are not 

met, students may develop over-reliance on digital tools. This overreliance can limit their ability 

to engage with and understand mathematical concepts independently. Educators must ensure 

that the use of such tools enhances rather than detracts from the development of essential 

mathematical reasoning and problem-solving skills.  

In terms of limitations, the small sample size may restrict the generalizability of the 

findings, and the focus on the abstraction level means the results are specific to this stage of 

geometric thinking. Future research should refine the HLT to explicitly address GeoGebra-

centric behaviour and explore its implementation across larger and more diverse participant 

groups to improve its scalability and applicability. 
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