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Abstract

Although enumeration problems are fundamental in combinatorics, little is known about how
students intuitively approach such enumeration problems before receiving formal instruction.
This exploratory qualitative study investigated the initial strategies employed by twelve-grade
students in solving enumeration problems prior to formal instruction on enumeration rules.
Fifteen students from a public senior high school in Kerinci, Indonesia, who had not yet learned
combinatorics in the curriculum, participated in this study. Data were collected through
students’ written responses to three combinatorial problems presented in different real-life
contexts and further explored through semi-structured interviews. Only responses
demonstrating coherent and interpretable strategy were analyzed. The findings reveal three
dominant strategies: listing all possible arrangements, generalizing patterns, and applying the
multiplication principle. These findings indicate that students possess intuitive approaches that
can serve as a foundation for formal combinatorial reasoning. The study aligns with the
Realistic Mathematics Education (RME) perspective, emphasizing the importance of guided
reinvention and contextual mathematization, and proposes implications for designing learning
trajectories that build on students’ informal reasoning in secondary mathematics education.
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Introduction

The ability to solve problems involving selection and arrangement is increasingly vital in
today’s complex and data-driven world. Whether consciously or not, individuals are often
required to make choices from a set of possibilities—such as planning travel routes, organizing
schedules, or selecting items within constraints—which inherently involve combinatorial
reasoning and numeracy. Globally, such skills are recognized as core components of
mathematical literacy (OECD, 2019, 2023), yet reports indicate that many students struggle
with tasks requiring these forms of thinking (Mullis et al., 2020). In Indonesia, the 2022 PISA
results revealed that the majority of 15-year-old students perform below minimum proficiency
in mathematics, particularly in tasks that require creative problem solving and application of
combinatorial reasoning in everyday contexts (Kusmaryono & Kusumaningsih, 2023). These
findings raise serious concerns about the preparedness of students to role effectively in
quantitative environments, both in academic and real-world settings.

Researchers and educators worldwide have responded to this issue by emphasizing the
need to develop both combinatorial thinking and numeracy as integral parts of mathematics
education (Geiger et al., 2015; Lockwood, 2013). Combinatorial thinking refers to the ability
to systematically explore and quantify possibilities in a given problem context, such as through
enumeration, arrangement, and selection (English, 1991; Lockwood, 2013; Salavatinejad et al.,
2021). Numeracy, by contrast, entails the capacity to interpret, evaluate, and act on quantitative
information to make reasoned decisions (Geiger et al., 2015; OECD, 2023). Both are essential
not only for academic success but also for informed participation in everyday life, such as
budgeting, planning, and risk assessment.

However, previous research has largely focused students’ post-instructional performance,
often evaluating how well students apply permutation or combination formulas after formal
teaching. As Matitaputty et al. (2022) that focus on identifying student mistakes conceptually
and procedurally in permutations and combinations. While such studies offer insights into
procedural knowledge and conceptual errors, they overlook how students initially make sense
of counting problems using their informal mathematical understanding. The study has
compared the strategies of students with and without instruction combinatorics instruction. For
example, Lamanna et al. (2022), but this study did not identify in detail the strategies of students
who had not received combinatorics instruction. These studies leaving a research gap in how
students approach enumeration problems intuitively prior to instruction.

Addressing this gap is crucial for two reasons. First, identifying students’ initial strategies
provides a window into their intuitive and informal thinking, revealing the cognitive resources
they bring to bear when confronting unfamiliar problems. Understanding students’ initial
strategies in solving enumeration problems is essential for supporting the development of
relational rather than merely instrumental understanding of combinatorial reasoning (Skemp,
1978). Second, it offers a powerful basis for designing instructional trajectories that begin with
students’ existing knowledge, consistent with the principles of Realistic Mathematics Education
(RME). RME, developed in the Netherlands and adapted in Indonesia (van den Heuvel-
Panhuizen & Drijvers, 2014; Zulkardi et al., 2020), emphasizes learning mathematics is seen
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as a process of guided reinvention, where students reconstruct formal mathematical concepts
from their informal experiences through mathematization—the progressive organization and
formalization of problem situations (Solomon et al., 2021).

By understanding students’ spontaneous approaches to enumeration problems, educators
can design tasks that bridge informal reasoning with formal counting principles in a cognitively
authentic procedure. Exploring such intuitive yet sometimes incomplete strategies aligns with
the notion of productive failure (Kapur, 2016), where students’ initial struggles to make sense
of problems can serve as a valuable foundation for subsequent conceptual learning. In
combinatorics, this means that students can move from intuitive enumeration (e.g., listing all
possibilities) toward systematic organization (e.g., tree diagrams) and eventually toward
abstract symbolic reasoning, such as the multiplication principle (English, 1991; Lockwood,
2013).

This study investigates how Indonesian twelfth-grade students solve enumeration
problems before receiving any formal instruction in counting principles. The problems were
embedded in everyday-related contexts that allowed for multiple solution strategies. The aim is
to identify and categorize the initial strategies students use and to discuss their implications for
designing RME-based instructional sequences. By doing so, the study contributes to a deeper
understanding of students’ informal reasoning in enumeration rules, and supports the
development of mathematics learning that is both contextually relevant and cognitively
meaningful.

Methods

This study employed a qualitative exploratory design to investigate students’ initial strategies
in solving enumeration problems before receiving any formal instruction. Qualitative research
1s particularly suited for uncovering the meaning behind students' responses and exploring their
thought processes (Creswell & Poth, 2018). The study focused on identifying and classifying
of naturally occurring strategies as a foundation for future instructional design based on
Realistic Mathematics Education (RME) principles.

The research was conducted before participants—twelfth-grade students—received any
formal instruction in counting principles (permutations, combinations, or the multiplication
principles) in their mathematics curriculum. This timing was crucial to ensure that students
relied solely on their prior mathematical knowledge and informal reasoning. Participants
consisted of 15 students (aged 18—19 years, 7 males and 8 females) from a public senior high
school Jambi, Indonesia, who voluntarily agreed to take part in the study. The selection was
based on purposive sampling, a common practice in qualitative research when the goal is to
explore specific cognitive phenomena in depth (Patton, 2015). Data saturation was achieved
when no new strategies emerged after analyzing all participant’s response, indicating that the
diversity of strategies had stabilized across students.

To elicit students' initial strategies, the researcher administered a pretest consisting of
three enumeration problems presented in different real-life contexts but requiring equivalent
mathematical reasoning. Each student was asked to choose and solve one problem to reduce
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cognitive load and allow deeper reasoning within a single context. However, this approach also
limited cross-problem comparisons, which is acknowledged as a methodological limitation of
the study. The problems are as follows:

Problem 1. In an exam, the teacher gives 4 questions. To ensure that students do

not cheat on each other, students are not allowed to answer the questions in the

same order as other students. How many different orders are there for answering

the 4 questions?

Problem 2. During Eid al-Fitr, you plan to visit the homes of Mr. Beni, Mrs. Dalius,

Mrs. Emi, and Mrs. Fitri. How many different routes are there to visit the 4

teachers' homes?

Problem 3. Suppose you want to create a PIN for your cellphone screen lock

consisting of 4 digits consisting of the numbers 0, 1, 2, and 3. How many different

PINs can you create?

Problems 1 and 2 represent permutation tasks without repetition (4! = 24), whereas
Problem 3 is intentionally open to dual interpretation—students may treat it as either with or
without repetition. This ambiguity was deliberately retained as a methodological feature to
reveal how students’ reason about combinatorial conditions when the context does not
explicitly specify constraints.

Data analysis was conducted using content analysis, students’ written responses were
collected and reviewed, focusing on identifying distinct and meaningful solution strategies.
Only responses that reflected distinct strategies—whether correct or partially correct—were
analyzed in depth, while responses exhibited misconceptions or relied on external aids were
excluded from the classification. Following the test, semi-structured interviews were conducted
with selected students to clarify their reasoning, confirm their thinking process, and avoid
misinterpretation of their written work. Interviews are a well-established method for capturing
students' cognitive strategies in mathematics education (Goldin, 2000).

Triangulation between written responses and interview data ensured credibility and
internal validity of the findings so that research results were more valid, accurate, and reduced
potential bias. Ethical procedures were followed throughout the study: informed consent was
obtained from all participants and initials were used to ensure anonymity.

Results

The written test was administered under a specific rule: students seated next to each other were
not allowed to solve the same problem. This rule aimed to minimize academic dishonesty and
encourage individual reasoning. Figure 1 presents an illustration of the students' seating
arrangement and their respective problem choices (e.g., RD (3) indicates that student RD
attempted problem number 3).
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Figure 1. [lustration of students’ seating arrangement and their problem choices

Problem 1: Question order arrangement

Only two students, AL and FZ, attempted Problem 1. AL manually attempted to list all possible
orders of answering four questions using trial-and-error. AL managed to produce only six
sequences, such as 1234, 4312, 2413, 1324, 2134, and 3142. However, the responses lacked
structure and did not suggest a systematic method of enumeration.
“My answer is still lacking but I hesitate to make all the arrangements because it is too
much.” — AL
FZ, in other hand, proposed a distinctive strategy by starting with six unique arrangements
starting with Question 1. Then generalizing the number of possible arrangements that would
result if the sequence began with other questions.
“I suspect that if the sequence (of working on the questions) starts with another number
(question) it will produce 6 sequences as well.” — FZ
Although FZ could not fully justify why each starting point would lead to exactly six
arrangements (see Figure 2), their strategy demonstrated an emerging awareness of recursive
or multiplicative reasoning, which could serve as an intuitive basis for introducing tree diagrams
or the multiplication principle in future instruction.

Translation:

e Kasens Leraich  das M Gaage Ao n (Arrangements)
T s Coviep ¥ omBia 2670 AABKE G, Because it consists of 4 digits and every first
1% U 6 B mewmadl b Soal. digit like 1 can make 6 arrangements.

1y U So, the number of different arrangement that
LMy oo puman Qb6 evet senmcnll | can be made are 6 x 4 = 24

VM Woran (BOTRPIe Maire Gy U I 2y :

-

Figure 2. FZ’s attempt to generalize the total number of orders from different starting

questions
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Problem 2: Visiting teacher’s houses

Five students—RT, NZ, 1Q, DZ, and AD—attempted this problem. RT and IQ independently
applied the multiplication principle by noting the decreasing number of choices at each stage
of the trip. IQ, for instance, reasoned that the first house could be chosen in 4 ways, the second
in 3, and so on (see Figure 3). However, during interviews, neither RT nor IQ could justify why
multiplication was the appropriate operation to combine these choices, indicating partial
understanding of the principle.

“If you add 4, 3, 2, and 1, the result is only 10. So I tried using multiplication.” — IQ

Vo4 peweny SeMR G Tinggar 3 Pgivang Translation:
23 etvang JieTth L TTAEB 2 paiany 1. (Given) 4 options, chosen 1, left 3 options
3.7 Pdwang  Fpbin L 1TAI300 | P 2. (Left)3 opt@ons, chosen 1, left 2 opt@ons
, 3. (Left) 2 options, chosen 1, left 1 options
4. L pgoan s o heew! 4. (Left) 1
A B2 | 2 4 x 3 x 2 x1=24routes or 4!
Few P 5 "o 7“4 Rurg /41| ABCD BCD €D D

Figure 3. 1Q’s use of logical step-by-step reasoning before multiplication

AD used a listing strategy similar to that of FZ in Problem 1. AD started by assuming the
trip began at Mr. Beni’s house, enumerated six different routes from that point, and then inferred
a total of 24 routes by multiplying by 4 potential starting points (see Figure 4). Interviews
revealed that AD had already listed all the possibilities on a separate sheet before making the
generalization.

“After I tried starting from Mrs. Dalius, the result was also 6. I guess this applies to
others too.” — AD

24 - j
vte, Translation:

s (€YY dindal dar Soian fy. 24 routes
feotorndo (ric 3 dimyar Because each route that begin from one teacher

Ka(ma S’
Tuman gury alak

fvmat P, B dor:
: house have 6 (routes). For example, here the
f;“{fxi“{ BU Danes, BU tmr, Bu ot routes that begin from Mr. Beni’s house.
KL By .
: o Bu BBy pay Arr
Pox Bl gy ot e & Daes (Arrangements)
PH Bt r Be 1) oy paes, P It means 6 x 4 = 24 (routes)
, : VoS, .
Pax sm,‘,fp P g g i NB:
wer By By .
C B b By paries 6 = the number of routes from each teacher
areye gy gy - ony house that visited first
LI . .
! ,fj::’:,i Wl dorl Scpio Cumek Tues 3 dbunis Py 4 = the number of teachers (house) that will be
VY Yan? spen o ko visited

Figure 4. AD’s strategy: listing from one starting point, then multiplying by the number of
starting points
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NZ presented only four routes, mistakenly assuming that different starting points alone
constituted different routes. This reflects a misconception, failing to recognize that multiple
permutations can originate from the same starting point (see Figure 5).

“I think there are only 4 routes because I started from Mr. Beni, Mrs. Dalius, Mrs. Emi,
and Mrs. Fitri.” — NZ

- pak bent —— T Bu gm) * .
T (;a 4 ruke M Cbe o Translation:
; There are 4 differnet routes.
Tl

- by emy Pk lpeen : . ) . o
- bugre Thy darus e Mr. Beni - Mrs. Dalius - Mrs. Emi - Mrs. Fitri
- pukites s e Mrs. Dalius - Mrs. Emi - Mrs. Fitri - Mr. Beni
] .: > Pk bert e Mrs. Emi - Mrs. Fitri - Mr. Beni - Mrs. Dalius
- B _ by dgvieg .. . . .
" ol e mike + 1 by oo ey e Mrs. Fitri - Mr. Beni - Mrs. Dalius - Mrs. Emi

Figure 5. NZ’s misinterpretation of route variation based solely on starting points

DZ showed a more fundamental misunderstanding by interpreting “route” as a single
segment of travel between two houses rather than a full sequence. For example, DZ considered
traveling from Mr. Beni’s to Mrs. Dalius’s house as a complete route. This error indicates a

failure to grasp the problem’s structure.

Problem 3: Creating a 4-digit PIN

This problem was chosen by most students: OK, RZ, AG, BG, IT, RD, HS, and PR. OK, RZ,
AG, IT, and PR used enumeration by listing possible PINs. Among them, only RZ successfully
listed 24 unique combinations by fixing the starting digit and varying subsequent digits
systematically (see Figure 6).

0.1,2,3 ,0.1,3 .
6\ a 2.0, Sedeap angka memiik: ‘ Translation: o

021y 2130 § wwian yang berbeda Sedap | Egch digit have 6
0, 2,31 :3‘ ZJ: angkonyd, §4étes beay different

0,3, ! o ] arrangements, so
pia T Jach Saye e membual | 6+6+6+6=24
Le,x3 301,12 Pin yang berbede sebanyar ‘ (Arr t5)

Lo,y 1 3,0, __3;4 dengan angka yoig berbedm angements, So. 1 ke 24
1,1,3,0 3, 0.2 ~- | 0, I can make
L0y 32,3 1 different PIN, by
L1, 3,0 : different digits.
,%,0,% 32,001 .

Figure 6. RZ’s systematic enumeration of unique pins based on starting digit

Interestingly, RZ used repeated addition rather than multiplication, suggesting a
completely manual enumeration process. On the other hand, OK and AG produced repeated
combinations due to a lack of systematic listing, as shown in Figure 7.

“I didn't check the same order. What matters is the total is 6 x 4. — OK
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“I believe it is true because sequences starting from different numbers have the same

total.” — AG

[ 2‘ r||

,9,;“_:23'_7" \ 02,13 2, 20,0
0. g, . ‘,—\, 1 2 1, 3.

~ 7 | Tear || evv3 2
0. zvﬁi\ \,_i_ _—!——i— Q0.2

Soar |Z enan an,

P r 2

O|2I113 el 0,1, 3 2,01, 7

O"\_Fw-"" S - Q,3, 4.2

32 Fa 1, : 3.0:%0
Sty [ 2 — 12,30 -
1,2.3,0 5 Boleds

1 % 2‘_(3_ EJ_L‘ ﬁ 1, 0,3 3 1 01

| 21050 0 Em

(o zd | 2ol || 32,001

FFJIO|-2’. \Fﬂ Q“I]O 1IO‘1‘g 3'|]|Tf6

’fO.'é,E | TET-N] 30,2

Figure 7. Overlapping PINs in OK’s (left) and AG’s enumerations (right)

In interviews, OK revealed that the listing assumed no repeated digits, indicating partial
awareness of repetition rules. However, both IT and PR failed to list all possible combinations,
producing only 22 and 6 combinations, respectively, some of which involved repeated digits
(e.g., 1122, 0000).

RD applied the multiplication principle by multiplying 4 x 4 x 4 x 4 = 256, assuming
each digit could be filled with any of the four available numbers (0—3). While RD was confident
in this approach, interviews revealed that RD could not justify the use of multiplication (see
Figure 8).

“These numbers can be repeated, so the number of choices remains the same (at each
step). ... Just multiply them to get the largest number.” — RD

Translation:
That is I can make.
That consist of 4 PIN.
J e So,4x4x4x4=256
" So, the number of PINs
that can be made are
- O Lo 256.

Figure 8. RD’s use of the multiplication rule without supporting explanation

HS used the strategy of listing combinations starting with one digit (0), similar to FZ and
AD, then multiplied by 4 to arrive at 24 PINs. Lastly, BG gave two answers: 256 (with repetition
allowed) and 24 (no repetition), but admitted during interviews that the answers were generated
using ChatGPT, and not through personal reasoning. Consequently, BG’s response was
excluded from strategy classification for reasons of methodological integrity.
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Variation of students’ strategies

Apart from DZ and BG, students' solutions were classified into three general strategies: (1)
listing all unique arrangements, (2) generalizing patterns of arrangement, and (3) using the
multiplication principle. The distribution of these strategies is summarized in Table 1.

Table 1. Summary of students’ strategies in solving enumeration problems

Strategy Students leelq:ilsl)c y Percentage Description
Listing Unique =~ OK, RZ, 7 47% Manually listing all
Arrangements AG, IT, NZ, possible outcomes

AL, PR

Generalizing FZ, AD, HS 3 20% Identifying structure or

Patterns pattern before
generalizing result

Using RT, 1Q,RD 3 20% Directly applying

Multiplication multiplication without

Principle full justification

No Clear DZ, BG 2 13% Misunderstanding or

Strategy or relying on external

Misguided tools

As summarized in Table 1, seven students (47%) relied on listing unique arrangements,
three (20%) generalized structural patterns, and three (20%) directly applied the multiplication
principle. The remaining two students (13%) either misunderstood the problem (DZ) or relied
on external tools (BG). These results indicate that while most students were able to engage in
combinatorial reasoning at an intuitive level, their strategies reflected varying degrees of
formalization—from exhaustive manual listing to emerging multiplicative reasoning.

Discussion

The findings of this study reveal that students employ various initial strategies in solving
enumeration problems, reflecting diverse levels of understanding related to permutations and
counting principles. The three main strategies identified were: (1) listing all possible
arrangements, (2) generalizing patterns of arrangement, and (3) applying the multiplication
principle. These findings suggest that students’ intuitive approaches reflect early forms of
relational understanding, as opposed to purely instrumental reasoning (Skemp, 1978).
Recognizing such informal reasoning is essential for designing learning trajectories that connect
intuitive thinking with formal combinatorial principles. The development of these strategies
aligns with the theoretical framework of Realistic Mathematics Education (RME), where
understanding progresses from contextual to formal reasoning through guided reinvention
(Solomon et al., 2021).

This classification was guided by previous research on students’ combinatorial reasoning
(Lockwood, 2013; Salavatinejad et al., 2021). Lockwood (2013) proposed a model of students’
combinatorial thinking that illustrates how learners progress from constructing explicit lists of
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possible outcomes to identifying structural patterns and, eventually, applying formal counting
principles such as the multiplication rule. This developmental trajectory reflects a gradual shift
from informal to formal reasoning. Similarly, Salavatinejad et al. (2021) found that students
initially rely on intuitive strategies such as listing and drawing visual representations to organize
possibilities, with only a few able to generalize patterns or correctly use the multiplication
principle. Together, these studies provide a strong theoretical basis for the three strategy
categories identified in this research—Ilisting unique arrangements, generalizing patterns of
arrangement, and using the multiplication principle—as they represent distinct yet connected
stages in students’ evolving understanding of enumeration problems.

The first strategy, listing all possible arrangements, was employed by the majority of
students. This strategy is aligned with Lamanna et al. (2022) that unveil that the majority of
students without combinatorics instruction use listing, mostly systematic, to help the
enumeration process. The listing strategy corresponds to the situational level of RME, where
reasoning remains embedded in the problem context (van den Heuvel-Panhuizen, 2003). This
strategy represents an intuitive and concrete approach to problem-solving and is characteristic
of the early stage of mathematization in the framework of Realistic Mathematics Education
(RME) (Freudenthal, 1991). Lockwood et al. (2015) argue that partial lists of the set of
outcomes which created by students led to significant improvements in solving problems,
implying that systematic listing worthwhile for students as they learn to count.

The second strategy—generalizing patterns of arrangement—was demonstrated by
students who attempted to make a tree diagrams however not complete but they can extrapolate
them to solve whole problems. This approach marks a transition toward horizontal
mathematization, where students begin to connect contextual problem situations to more
structured mathematical representations (van den Heuvel-Panhuizen, 2003). For example,
students like FZ and AD showed an intuitive grasp of repeated structural patterns, even though
they were not able to articulate them formally. This indicates that students were beginning to
construct informal models of mathematical structure, which can serve as a foundation for formal
instruction on permutations and tree diagrams (Litwiller & Bright, 2002). This symbolic
representation like tree diagrams enables students to perceive how elements can be combined
in a systematic manner and help them develop their combinatorial reasoning (Borba et al.,
2015).

The third strategy, applying the multiplication principle, reflects a shift toward vertical
mathematization—moving from informal representations to formal mathematical procedures
(Gravemeijer, 2004). However, it is important to note that most students using this strategy did
not demonstrate a deep conceptual understanding of why multiplication was appropriate in the
given context. Although the use of the multiplication principle suggests potential for formal
reasoning, pedagogical support is needed to guide students toward a full conceptual grasp of
the method. The research shows that it is not always natural for students to use the
multiplication rule in solving combinatorics problems because it involves sequential steps that
tend to be complicated for beginners (Lockwood & Purdy, 2020).

In the specific case of the PIN problem, students’ understanding became more complex
due to the involvement of digit repetition. Some students limited their responses to non-
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repetitive arrangements, while others conflated repetition and non-repetition scenarios. This
finding underscores the need for explicit instruction on the distinction between permutations
with and without repetition, as recommended by Lockwood (2013) in her study on
combinatorial representations.

Two students, DZ and BG, displayed responses that did not align with any of the three
major strategies. DZ misunderstood the concept of "route" as a complete tour rather than a
sequence of destinations, while BG provided a correct answer but admitted to relying on Al
assistance (ChatGPT). The latter case illustrates a growing issue in mathematics education
related to academic integrity and the responsible use of digital tools. While technology can be
a valuable tool in fostering mathematical thinking, it can also hinder cognitive engagement if
used as a substitute for reasoning rather than a support for it (Zbiek et al., 2007).

A particularly meaningful feature of this study is its cultural context. The enumeration
problems—especially the Eid al-Fitr visiting scenario—are deeply familiar to Indonesian
students. Such culturally resonant contexts align with the RME emphasis on realistic
(experientially meaningful) situations (van den Heuvel-Panhuizen & Drijvers, 2014). The use
of tourism and holiday activities connects mathematics to students lived experiences, enabling
authentic engagement and supporting horizontal mathematization. This underscores that
realistic contexts need not be Western or generic; they can and should be locally and culturally
grounded to enhance relevance and motivation.

These findings have significant implications for instructional design informed by RME
principles. First, students need learning experiences that stimulate natural mathematization
processes from contexts that are meaningful to them—such as the tourism scenarios used in this
study. Second, teachers play a crucial role in encouraging open exploration of student strategies
prior to introducing formal procedures. Third, students’ initial strategies should serve as starting
points for developing a bottom-up learning trajectory, in accordance with the principle of
guided reinvention in RME (Eerde, 2013).

The findings carry several implications for mathematics instruction, particularly in the
domain of counting and permutations. The problems in this study provided meaningful contexts
that facilitated student engagement and elicited natural strategies. Teachers should integrate
culturally relevant and experientially rich contexts that allow students to mathematize real-life
situations (van den Heuvel-Panhuizen & Drijvers, 2014). Teachers should create space for
students to share and discuss their own problem-solving strategies before introducing formal
methods. This aligns with the RME principle of guided reinvention, allowing students to
construct mathematical understanding from their own thinking. Solomon et al. (2021)
emphasized that guided reinvention requires environments that encourage exploration before
formalization.

Although some students’ strategies appeared incomplete or incorrect, these attempts can
be seen as instances of productive failure (Kapur, 2016), where the struggle to construct
solutions independently lays the groundwork for deeper conceptual understanding in
subsequent instruction. Instruction should focus on developing students’ reasoning about when
and why multiplicative structures apply, using tools such as tree diagrams and systematic listing
as transitional models (English, 1991; Lockwood, 2013). Teachers also play a crucial role in
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orchestrating whole-class discussions, connecting informal and formal strategies, and bridging
intuitive ideas with canonical mathematical representations (Stein et al., 2008). While digital
tools like AI can support learning, their integration should aim to enhance—not replace—
student thinking. Educators must carefully monitor how students use such tools to ensure
productive engagement (Zbiek et al., 2007).

Conclusion

This study demonstrates that even without formal instruction, students naturally use a range of
strategies—Ilisting all possible arrangements, generalizing patterns, and attempting to apply the
multiplication principle—reflecting varying levels of informal combinatorial reasoning. While
some students relied heavily on trial-and-error or incomplete listing strategies, others began to
show signs of structural understanding and pattern generalization. Only a small number
attempted formal mathematical reasoning. These findings underscore the importance of
recognizing and leveraging students’ intuitive thinking as a foundation for meaningful learning
trajectories in combinatorics. Teachers should view students’ informal approaches not as
misconceptions, but as seeds of mathematical understanding that can be nurtured through
guided reinvention.

Future research should extend this work in several directions. First, design experiments
could be conducted to test learning trajectories that build on students’ initial strategies and
progressively develop conceptual understanding of counting principles. Second, cross-cultural
studies could explore whether similar intuitive patterns emerge in different sociocultural
settings, thereby enriching the global understanding of combinatorial reasoning. Third, the
integration of digital tools—such as dynamic tree diagram applications or Al-based
visualization aids—should be examined for their potential to support students’ exploration and
deepen their relational understanding of combinatorial structures.
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