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Abstract  

Computational thinking (CT) is a vital 21st-century skill in mathematics education, enabling 

students to solve problems systematically through decomposition, pattern recognition, 

abstraction, and algorithmic thinking. However, students’ mathematical disposition—

encompassing beliefs, habits of mind, and affective tendencies—may significantly influence 

CT development. Guided by the affective–cognitive interaction model, this study aimed to 

explore how mathematical disposition shapes students’ CT skills, particularly in solving 

systems of three-variable linear equations using self-constructed, flowchart-supported 

algorithmic representations. A descriptive qualitative approach was adopted, with six students 

(two each from high, medium, and low disposition levels, identified via questionnaire) 

participating. Data collection involved a disposition scale, CT test, interviews, and 

documentation. Findings revealed that high-disposition students successfully demonstrated all 

CT indicators and produced coherent flowcharts. Medium-disposition students showed 

variability: some met all criteria, while others faltered in algorithmic design. Low-disposition 

students managed only basic decomposition and pattern recognition, with incomplete 

abstraction and fragmented flowcharts. These results suggest a strong link between affective 

factors and cognitive performance in CT tasks. Implications highlight the importance of 

integrating disposition-aware scaffolding—such as interactive visual tools and guided 

reflection—to support diverse learners and enhance CT development in mathematics 

classrooms. 
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Introduction 

Computational thinking is one of the essential skills in the 21st century and supports the 

challenges of the Industrial Revolution 4.0 era (Ramaila & Shilenge, 2023; Suarsana et al., 

2024). Computational thinking is highly necessary for developing critical thinking, fostering 

creativity, and enhancing problem-solving abilities (Nordby et al., 2022). It is a way of 

understanding and solving complex problems using techniques and concepts from computer 

science, involving decomposition, pattern recognition, abstraction, and algorithms (Lee et al., 

2023; Muhammad et al., 2023; Supiarmo et al., 2022). Computational thinking is not only about 

solving problems but also about reasoning through problems, formulating questions, and 

estimating possible solutions (Maharani et al., 2019). It is recognized as a basic cognitive 

problem-solving procedure that facilitates modern literacy (Doleck et al., 2017). Through 

computational thinking, individuals can easily observe problems, search for solutions, solve 

problems, and develop effective problem-solving strategies. Moreover, computational thinking 

trains individuals to think more effectively and efficiently. Therefore, it is crucial for students 

to possess strong computational thinking skills. 

Computational thinking involves a process of logical reasoning, which includes 

algorithmic thinking, problem decomposition, pattern recognition and generalization, 

abstraction, and evaluation to solve and understand complex problems more easily (Angeli, 

2022; Tang & Ma, 2023; Wing, 2017). According to Isharyadi and Juandi (2023), 

computational thinking consists of decomposition, pattern recognition, abstraction, and 

algorithmic thinking. The characteristics of computational thinking, according to Sezer and 

Namukasa (2023), are as follows: 1) decomposition: students can identify the required 

information or what is known from a given problem, as well as identify what is being asked 

based on the information provided; 2) pattern recognition: students can understand existing 

patterns and relate them to previously learned patterns; 3) abstraction: students can draw 

conclusions by eliminating unnecessary elements when implementing a problem-solving plan, 

and 4) algorithmic thinking: students can describe the logical steps used to construct a solution 

to the given problem. Thus, mastering computational thinking skills helps in recognizing 

patterns and deepening the understanding of problems to be solved. 

A preliminary study conducted in class X-11 at MAN 1 Kota Semarang involving 35 

students aimed to measure their computational thinking skills. The findings revealed that 

students were able to identify known and asked-for information in a problem and could 

determine a problem-solving strategy using the formula 𝑈𝑛 = 𝑎 + (𝑛 − 1)𝑏. However, they 

were unable to transform real-life problems into mathematical problems and could not solve 

them using logical step-by-step reasoning. This aligns with the computational thinking 

indicators, showing that students had not met the abstraction and algorithmic thinking criteria—

where abstraction requires the ability to eliminate irrelevant elements when executing a solution 

plan, and algorithmic thinking requires the ability to outline logical steps for solving a problem. 

Therefore, based on the results of this preliminary test, it is evident that students have not yet 

optimally utilized computational thinking skills, highlighting the need for improvement in this 

area. 
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These findings were reinforced by interviews conducted at MAN 1 Kota Semarang, 

which revealed that while learning was intended to be student-centered, students were not 

actively engaged in the learning process. Although teachers sometimes provided word 

problems, many students still struggled to solve mathematical problems in the form of real-life 

story questions. This difficulty arose because students often had trouble understanding the 

problems, making it hard for them to focus on the core issues. Furthermore, they struggled to 

connect relevant concepts needed to solve problems, which hindered their ability to plan and 

determine effective solution steps (Wang, 2023). Consequently, students still required guidance 

from teachers to find solutions to word problems. This situation reveals a gap compared to 

previous studies, which found that mathematical computational thinking skills remain limited 

to the algorithmic indicator and have yet to reach a satisfactory level. In particular, students 

have not been able to solve mathematical problems by writing down more effective and 

simplified solution steps. Indicators of mathematical computational thinking that tend to be 

weaker include decomposition, abstraction, and algorithmic thinking (Isharyadi & Juandi, 

2023; Sezer & Namukasa, 2023).  

One effective tool for applying algorithmic thinking steps in computational thinking is 

the flowchart, which visualizes the problem-solving process in an ordered instructional 

diagram. Using flowcharts helps students better understand the logical sequence of problem-

solving steps in a more systematic and structured manner (Threekunprapa & Yasri, 2020; Zhang 

et al., 2023). Additionally, Rahman et al. (2020), found that flowcharts can enhance students’ 

computational thinking skills by enabling them to visualize algorithms before implementing 

them in programs or manual solutions. Thus, the use of flowcharts not only supports the 

systematic design of algorithms but also strengthens computational thinking skills in various 

learning contexts and real-world educational media development.  

In this study, the flowchart is utilized as a mediating learning tool aimed at enhancing 

students’ algorithmic thinking skills, which constitute one of the key dimensions of 

computational thinking. Through the implementation of flowcharts, students are guided to 

represent the logical sequence of steps in solving mathematical problems systematically, 

enabling them to visualize thought processes, recognize interprocess relationships, and evaluate 

the effectiveness of the strategies employed. Explicit instruction on the use of flowcharts is 

provided through learning activities involving the identification of symbols, analysis of 

decision branches, and reflection on the constructed logical flow. Thus, the flowchart functions 

not only as a visual aid but also as a cognitive and affective mediation mechanism that bridges 

algorithmic thinking processes with students’ mathematical dispositions, particularly in 

fostering self-confidence, perseverance, and independent logical reasoning in problem solving. 

Computational thinking (CT) is inherently connected to real-world problem solving and 

is strongly influenced by students’ affective mastery, particularly their mathematical disposition 

(Begum et al., 2021; Jong et al., 2020). According to NCTM (2000), mathematical disposition 

as a constellation of beliefs, habits of mind, and affective tendencies. involves confidence, 

curiosity, perseverance, and appreciation of mathematics in daily life factors that support 

holistic cognitive affective development (Azizia et al., 2024). The affective–cognitive 

interaction model Zan et al. (2006), explains that perseverance and self-confidence facilitate 
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algorithmic thinking and abstraction, while Self-Determination Theory (Ryan & Deci, 2000), 

highlights that competence and autonomy enhance intrinsic motivation for CT engagement. 

Empirical studies confirm this interrelation: reflective and critical dispositions strengthen 

cognitive flexibility that supports algorithmic reasoning (Jong et al., 2020; Pérez, 2018). 

Recent findings further emphasize this link, showing that students’ beliefs and attitudes 

toward mathematics significantly shape their computational competencies (Zhang et al., 2023). 

Integrating CT into the curriculum fosters not only abstraction and algorithmic thinking but 

also reflective engagement and positive attitudes (Lee et al., 2023). CT itself consists of four 

interrelated dimensions decomposition, pattern recognition, abstraction, and algorithmic 

thinking each requiring affective traits such as perseverance, curiosity, flexibility, and 

confidence (Mertens & Colunga, 2025). Thus, CT and mathematical disposition form a 

mutually reinforcing framework: cognitively, CT structures systematic reasoning and enhances 

students’ confidence (Lee et al., 2023; Mertens & Colunga, 2025); affectively, disposition 

nurtures motivation and willingness to engage in computational problem-solving (Lee et al., 

2023; Zhang et al., 2023). A strong disposition fosters perseverance and appreciation for the 

problem-solving process itself. Consequently, interventions to strengthen CT should also 

cultivate positive mathematical dispositions, ensuring that cognitive and affective growth 

develop synergistically within a reflective and meaningful learning environment (Lee et al., 

2023). 

Several prior studies have investigated computational thinking in mathematics learning 

(Calao et al., 2015; Elicer et al., 2023; Sezer & Namukasa, 2023; Solitro et al., 2017; Wardani 

et al., 2022). Some researchers have examined it from the perspectives of self-efficacy (Azizia 

et al., 2023; Kayhan et al., 2024), self-confidence (Firmasari et al., 2025; Psycharis & 

Kotzampasaki, 2019), and self-regulated learning (Hariyani et al., 2024). However, research 

specifically exploring how mathematical disposition influences students’ computational 

thinking processes remains limited. Likewise, few studies have presented visual representations 

in the form of flowcharts to model students’ thinking processes systematically (Chinofunga et 

al., 2025; Cromley & Chen, 2024; Schraw & Richmond, 2022).The use of flowcharts in 

computational thinking is theoretically grounded in their ability to externalize algorithmic 

structures, transforming abstract reasoning into concrete visual forms. They also foster 

metacognition by allowing learners to monitor and refine their thought processes, consistent 

with dual-coding theory, which emphasizes that combining verbal and visual representations 

enhances learning and retention (Clark & Paivio, 1991; Fleur et al., 2021). Therefore, this study 

aims to analyze students’ computational thinking processes based on their mathematical 

disposition levels using flowchart visual representations. This visualization is expected to 

describe students’ thought processes in detail, distinguish problem-solving strategies across 

disposition categories, and contribute to designing adaptive, responsive mathematics learning 

tailored to students’ characteristics. 
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Methods 

This study employed a qualitative approach with an exploratory descriptive design, which 

aimed to analyze students’ computational thinking skills in relation to their mathematical 

dispositions through the completion of mathematics problems assisted by flowcharts. A 

qualitative approach was chosen as it allowed the researcher to explore in depth the students’ 

thinking processes and problem-solving strategies within the context of real classroom learning 

(Silverman, 2021).  

The research subjects were six students from class X-5 of MAN 1 Kota Semarang, who 

had previously studied the topic Systems of Three-Variable Linear Equations. The subjects 

were selected purposively based on the category of mathematical disposition level (high, 

medium, low) obtained through a questionnaire. This selection was made to obtain in-depth 

data variation in the context of the case study, with the awareness that the results of this study 

are analytical generalizations and have limitations in statistical generalization. Mathematical 

disposition was defined as a constellation of beliefs, habits of mind, and affective tendencies 

(Kusmaryono et al., 2019; NCTM, 2000).  

The instruments used in this study consisted of: (1) a mathematical disposition 

questionnaire to classify students into three disposition levels, adapted from Arifuddin (2024) 

all items in the mathematical disposition questionnaire have r-count values greater than r-table 

(0.388), indicating that the instrument is valid. Furthermore, the Cronbach’s Alpha value of 

0.935 demonstrates very high reliability, confirming that the questionnaire is suitable for use as 

a research instrument; (2) computational thinking skill test items; (3) interview guidelines; and 

(4) observation sheets and documentation of students’ work. 

Table 1. Question indicator computational thinking 

Learning 

Objective  
Question Indicator 

Computational 

Thinking Skill 

Indicators 

Item 

Number 

Solve contextual 

problems related 

to systems of 

three-variable 

linear equations   

Given a word problem about 

purchasing food and drinks at KFC 

with package prices, students can 

calculate the price of each type of 

food and drink using the  solution 

method. 

1. Decomposition 

2. Pattern 

Recognition 

3. Abstraction 

4. Algorithmic 

Thinking 

1 

Given a word problem about 

purchasing stationery at two 

different stores, each offering 

different package prices, students 

can determine which store is more 

recommended between the two. 

2 

All instruments were validated through expert assessment involving two mathematics 

education lecturers and one mathematics teacher who assessed their content and structure. 

Revisions were made based on their feedback to ensure alignment with the research objectives. 

The instrument trial was conducted with Class XI-1 students at MAN 1 Kota Semarang, 

consisting of four test items. The results indicated that all items were valid, as the calculated 
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correlation coefficient 𝑟𝑐𝑜𝑢𝑛𝑡 > 𝑟𝑡𝑎𝑏𝑙𝑒(0.329). The reliability coefficient of the test was 𝑟11 =

0.7367, categorized as high, demonstrating good internal consistency of the instrument. The 

difficulty levels ranged from moderate to difficult, while the discrimination indices for all items 

were classified as very good. These findings confirm that the instrument is valid, reliable, and 

appropriate for assessing students’ computational thinking abilities.  

The research procedure was conducted in the following stages:  

1. Preparation Stage 

a. Development of the computational thinking skill instrument, validated by subject-

matter experts. 

b. Pilot testing of the instrument to ensure clarity and appropriateness of test items. 

c. This study received ethical approval from the Research Ethics Committee of Semarang 

state university and obtained ethical approval from the relevant institutional ethics 

committee. As the participants were minors, parental consent and student assent were 

obtained prior to conducting the study. Participation was voluntary, and students were 

informed of their right to withdraw at any time without consequences. All personal data 

was anonymized to maintain confidentiality. 

d. In the learning process, flowcharts are introduced as visual aids (visual scaffolding) to 

help students externalize and organize their algorithmic thinking patterns in a more 

structured manner. At the beginning of the activity, students are given a brief 

introduction to the basic conventions of using flowcharts, such as the use of process 

symbols, decision symbols, and arrows to indicate the flow. After the introductory stage, 

students carry out computational problem-solving tasks, where they are given the 

freedom to use or not use flowcharts in representing their thought processes. This design 

aims to observe the extent to which visual representation through flowcharts can 

facilitate or differ from non-visual thinking in developing algorithmic problem-solving 

strategies. 

e. The research was conducted after instruction on the topic system of three variable linear 

equations, followed by the administration of the Computational Thinking (CT) test to 

measure students’ algorithmic thinking skills. Students were given 60 minutes to 

complete the test.  

2. Data Collection Stage 

a. Administration of the mathematical disposition questionnaire to all 36 participants. In 

this study, the mean (μ) and standard deviation (σ) were used as the basis for 

determining students’ mathematical disposition categories, since each class exhibited 

different score distributions. Therefore, the μ ± σ approach was considered the most 

appropriate to provide a fair, representative, and context-sensitive classification 

according to each class’s characteristics. This method allows the researcher to illustrate 

students’ ability variations proportionally while preserving the natural variability of the 

data within each group. Based on the calculated mean and standard deviation values, 

the categorization of students’ mathematical disposition scores is presented in the 

following table. 
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Table 2. Mathematical disposition categories for Class X-5 

Score Range Mathematical Disposition Score Category 

X ≥ μ + σ X ≥ 91.35 High 

μ − σ ≤ X < μ + σ 68.82 ≤ X < 91.35 Medium 

X < μ − σ X < 68.82 Low 

b. Administration of the computational thinking test, which measured four indicators 

decomposition, pattern recognition, abstraction, and algorithmic thinking based on the 

indicators listed in Table 1. The test used contextual problems in the form of a system 

of three-variable linear equations along with a task requiring students to create a 

flowchart. 

c. Selection of six students (two from each disposition category) for semi-structured 

interviews. The interviews explored problem-solving strategies, use of flowcharts, 

pattern recognition, abstraction processes, and error correction. 

3. Data Analysis Stage 

a) Analysis of mathematical disposition questionnaire scores using the categorization 

formula in Table 2 to determine each student’s disposition level. 

b) Analysis of computational thinking test results using a rubric aligned with the four 

indicators (decomposition, pattern recognition, abstraction, algorithmic thinking), 

focusing on accuracy, completeness, and systematic representation. 

c) Analysis of interview transcripts following Huberman’s model: 

1) Data reduction selecting relevant excerpts and coding key themes related to 

computational thinking processes. 

2) Data display organizing findings in tables, flowcharts, or descriptive profiles for each 

subject. 

3) Conclusion drawing and verification identifying patterns, linking computational 

thinking performance with mathematical disposition, and checking consistency across 

test, questionnaire, and interview data. 

Results 

Results of students’ computational thinking and mathematical disposition 

The following are the results of students’ computational thinking skills and mathematical 

dispositions, which were categorized into high, medium, and low levels.  

 

Figure 1. Categori computational thinking and mathematical dispositions 
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For a more in-depth analysis, six research subjects were selected, each representing 

different categories. The selection of these subjects aimed to illustrate the variations in students’ 

characteristics when solving flowchart-based problems. The following table presents the 

selected subjects. 

Table 3. Six research subjects 

Number Students Code Mathematical dispositions Computational thinking 

1 E35 High 112 High 100 

2 E12 High 105 High 91,67 

3 E31 Middle 81 Middle 83,33 

4 E29 Middle 76 Middle 70,83 

5 E32 Low 68 Middle 62,50 

6 E36 Low 67 Low 58,33 

 

Based on Table 3, overall, higher mathematical disposition tends to align with higher 

computational thinking (CT) performance. However, participant E32 represents a notable 

exception despite low disposition, achieved medium CT due to scaffolding during problem 

solving. This suggests that instructional support can enhance CT performance even among 

learners with low disposition. 

 The results of the computational thinking skills test taken by class X-5 students, along 

with interview data, were used as a reference to classify students according to the indicators of 

computational thinking skills. The test results and interview data were examined with reference 

to the four indicators of computational thinking: decomposition, pattern recognition, 

abstraction, and algorithmic thinking. 

Students’ computational thinking skills with high mathematical disposition 

The mathematical disposition of students in the high category toward computational thinking 

skills was described based on the test results and interview data from two subjects, namely E35 

and E12. 

Subject E35, with a mathematical disposition score of 112 (high category), obtained a 

post-test score of 100, which was classified as high-level computational thinking skills. The 

following is the result of the post-test. Subject E35 was able to answer question number 1 

correctly. 

Subject E35 correctly answered the question by writing down the important information 

provided in the problem: 

“Given: 1 burger, 1 fries, and 1 soda = Rp 34,000; 2 burgers, 2 fries, and 1 soda = Rp 

58,000; 3 burgers, 1 fries, and 2 sodas = Rp 74,000. Asked: the price of each type of food and 

drink.” 

Based on the test results and interview data, subject E35 demonstrated strong ability in 

identifying the given information in detail and accurately understanding the information being 

asked. This indicates that the subject had successfully achieved the decomposition indicator, 

namely the ability to break down complex problems into simpler and more relevant pieces of 

information. The subject’s ability in pattern recognition and abstraction was also evident from 

their skill in recognizing the relationships among variables in the problem.. The subject 
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independently organized the information into a system of three-variable linear equations and 

was able to identify the correlation between the quantity of items and their total price: 

“Let x = burger, y = fries, and z = soda. The mathematical model is: x + y + z = 34,000; 

2x + 2y + z = 58,000; 3x + y + 2z = 74,000. Then I used the determinant method.” 

 

 

a. Decomposition: The student successfully 

breaks down the contextual problem into 

three main components (burger, fries, 

soda) and represents them in a system of 

linear equations. 

b. Pattern Recognition: The student identifies 

structural similarities among the equations 

and recognizes coefficient patterns to 

select the appropriate solving method. 

c. Abstraction: The student simplifies the 

real-world problem into a symbolic 

mathematical model (x, y, z) that is 

relevant and easy to analyze. 

d. Algorithmic Thinking: The student 

organizes logical steps in a flowchart, 

showing procedural order from problem 

identification to determinant calculation 

 

 

Figure 2. Answer from E35 

Algorithmic thinking was demonstrated by the subject in outlining the solution steps. The 

subject chose to use the determinant method: 

“I used a flowchart: first I wrote the three-variable linear equations, then applied the 

determinant method. Next, I found D, then Dx, Dy, and Dz. I divided Dx, Dy, and Dz by D to 

obtain x = 15,000; y = 9,000; and z = 14,000.” 

Thus, student E35 met all the indicators of computational thinking skills: decomposition, 

pattern recognition, abstraction, and algorithmic thinking. 

In contrast, subject E12, although having a high mathematical disposition, made an error in the 

determinant calculation (Dz), which affected the final result. The subject realized the mistake 

during the re-substitution process and corrected the incorrect value. The following is the result 

of subject E12’s work. 

 

a 

b 

c 

d 
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Figure 3. Answer from E12 

In solving the problem, the subject used the determinant method and created a flowchart 

to illustrate the steps. However, there was an error in calculating the determinant value of Dz, 

which initially led to an incorrect final result. Nevertheless, the subject recognized the mistake 

and attempted to correct it: 

“After substituting into equation 1, x + y + z = 34, 15 + 9 + 14 = 38, so something is 

wrong—it should be 34. For Dz, it should not be 140 but 148, and the result of Dz = –20, so z 

= (–20) / (–2) = 10, meaning the correct price of the soda is Rp 10,000.” 

The data from the test results and interviews were consistent, showing that subject E12 

was able to reflect on their error and correct it. Thus, although having a high mathematical 

disposition does not guarantee a completely error-free problem-solving process, students with 

high disposition, such as E12, can still devise an appropriate problem-solving strategy, identify 

and correct mistakes, and demonstrate deep conceptual understanding through reflection. 

Overall, students with a high mathematical disposition can fulfill all indicators of computational 

thinking skills: decomposition, pattern recognition, abstraction, and algorithmic thinking 

demonstrated strong but imperfect algorithmic reasoning.  

Students’ computational thinking skills with a moderate mathematical disposition 

The computational thinking skills of students with a moderate mathematical disposition were 

analyzed based on interview results from two subjects, namely E31 and E29. The third subject 

(E31), with a mathematical disposition score of 81 (moderate category), obtained a score of 

83.33, which falls under the criteria of moderate-level computational thinking skills. Subject 

E31 was able to solve the problem well, but made some errors. 

The student demonstrates decomposition 

by breaking the problem into three 

variables (burger, fries, soda) and 

expressing them in linear equations. 
Through pattern recognition and 

abstraction, the student identifies equation 

structures and represents the situation 

symbolically as (x,y,z). In algorithmic 
thinking, the student follows a logical 

procedure in a flowchart; although an 

error occurred in calculating Dz, the 

student recognized and attempted to 

correct it. 
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Figure 4. Answer from E31 

E31 was able to identify the given information from the problem in detail, namely the 

stationery packages from store A and store B. The subject also recognized the information being 

asked, although it was not stated completely. In the answer sheet, the subject only wrote that 

the question was about finding the price of each stationery item, without explicitly writing the 

price comparison between store A and store B. 

E31 successfully translated the problem information into a mathematical form quite well. 

They assigned the variables x, y, and z to represent the prices of books, pencils, and erasers, 

respectively, and then correctly formulated a system of three linear equations for each store. 

This indicates that the subject had mastered the abstraction indicator the ability to transform 

contextual information into a systematic mathematical representation. 

In solving the problem, the subject used the determinant method and wrote the calculation 

steps in a logical format. They arranged the matrix form, calculated the main determinant, and 

found the determinants for each variable. However, the calculations were not completed in full 

there was one variable (y, pencil) that remained unknown by the end of the work, and the 

conclusion regarding the price of each item in both stores was not stated completely. 

“Conclusion: Store A – book Rp 5,000, pencil Rp 4,000, eraser Rp 2,000. Store B – book Rp 

6,000, pencil… oh, I haven’t written it yet, for the eraser it’s Rp 2,000, so for the pencil it’s 

322,000 ÷ 92 = 3,500.” 

The student demonstrates 

decomposition by breaking the 

problem into three variables and 

expressing them in linear 
equations. Through pattern 

recognition and abstraction, the 

student identifies equation 

structures and represents the 
situation symbolically as (x,y,z). 

In algorithmic thinking, the 

student follows a logical 

procedure in a flowchart; the 
value of variable y was not 

provided. The student recognized 

the mistake and attempted to 

correct it. 
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During the interview, the subject was able to explain their answer quite well, including 

completing the part that was missing from the written solution. This shows that, conceptually, 

the subject understood the solving process, but did not fully present it in writing. From the 

pattern recognition perspective, E31 was able to identify the relationship between the number 

of stationery items and their total prices in each store, and successfully formulated the correct 

three-variable linear equation model. This demonstrates the ability to see the structure of data 

and organize it mathematically. In terms of algorithmic thinking, the subject showed a logical 

and procedural sequence of steps using the determinant method. They understood the steps 

needed to solve the system, even though not all results were explicitly stated at the end. 

From the triangulation of the test and interview results, consistent and mutually 

supporting data were obtained. The subject’s mistakes were not due to conceptual 

misunderstanding, but rather incomplete written documentation. Therefore, E31 was able to 

meet all four indicators of computational thinking decomposition, pattern recognition, 

abstraction, and algorithmic thinking. The subject could fully identify problem information, 

create an accurate mathematical model, and solve the problem using logical steps, even without 

a flowchart visualization. Their verbal explanation demonstrated a thorough understanding of 

the problem-solving process. 

In contrast, subject E29, despite having a moderate mathematical disposition score of 76 

and obtaining a score of 70.83, was not able to fully meet all computational thinking indicators. 

E29 only met the decomposition, pattern recognition, and abstraction indicators, but did not 

fully demonstrate algorithmic thinking. While the subject was able to outline solution steps and 

give the correct final conclusion, the elimination and substitution process was not systematic, 

and no answer verification was conducted. This shows a limitation in organizing and applying 

a complete problem-solving algorithm. 

E29 demonstrated a fair understanding of solving the three-variable system of linear 

equations  using a combined method. The subject was able to identify the given information the 

prices of various stationery packages from store A and store B and the information being asked, 

namely the price of each item and the price comparison between the stores. E29 assigned 

variables x, y, and z to represent the prices of books, pencils, and erasers, and formulated a 

mathematical model in the form of three linear equations. However, there was an error in 

writing the initial equations, both in the constants and the equation structure, which the subject 

acknowledged during the interview: 

“Mathematical model for store A: 8x + 4y + 3z = 62,000, 5x + 8y = 37,000, and 3x + z = 

17,000. But actually, it should be 57,000 I wrote it wrong.” 

This shows that although there was an error, the subject had reflective awareness and was 

able to correct it when prompted. However, in algorithmic thinking, the subject’s ability was 

still limited. E29 used the elimination–substitution method, but the sequence of solving steps 

was not systematic and was not supported by visual aids such as a flowchart. Moreover, the 

subject did not verify the results by substituting them back into the original equations. 

Even so, E29 was able to clearly state the final conclusion, namely the prices of books, 

pencils, and erasers in each store, and identified that store A was cheaper. Overall, E29 fulfilled 
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three computational thinking indicators decomposition, pattern recognition, and abstractionbut 

did not meet the algorithmic thinking indicator. 

 

Figure 5. Answer from E29 

 

Participants E31 and E29 showed consistent patterns between their middle mathematical 

disposition and corresponding CT levels. Regarding flowchart quality and use, E35 produced a 

complete and accurate flowchart that included all decision points and verification steps, while 

E29 did not use a flowchart at all, which may have limited their ability to plan algorithmic 

processes systematically. 

Students’ computational thinking skills with low mathematical disposition 

The mathematical disposition of students in the low category toward computational thinking 

skills was examined based on interview results from two subjects, namely E32 and E36. The 

following is a description of the two subjects in relation to the problem they worked on. 

Subject E32, with a mathematical disposition score of 68 (low category), obtained a 

computational thinking score of 62.50, which falls into the low level category. E32 was able to 

answer the questions, and the following is the result from E32. 

The student demonstrates 

decomposition by breaking 
the problem into three 

variables and formulating 

them as a system of linear 

equations. Through pattern 
recognition and abstraction, 

the student identifies the 

equation structures and 

represents the situation 
symbolically as (x,y,z). In 

terms of algorithmic 

thinking, the student’s 

ability remains limited. The 
student applies the 

elimination–substitution 

method, yet the sequence of 

steps is less systematic and 
not supported by visual 

representation such as a 

flowchart, resulting in a 

problem-solving process 
that is not fully structured 

logically. 
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  Figure 6. Answer From E32 

E32 demonstrated good computational thinking skills in solving the problem, particularly 

in the indicators of decomposition, pattern recognition, and abstraction, but did not fully meet 

the indicator of algorithmic thinking. E32 was able to identify the known information from the 

problem well, namely the contents and prices of each package. The subject also understood 

what was being asked namely, the individual prices of each item. This indicates achievement 

in the decomposition indicator, which is the ability to break down a problem into simpler pieces 

of information. 

The subject’s ability to construct the relationships between these elements also indicates 

achievement in the pattern recognition and abstraction indicators, where the subject 

successfully translated the problem’s context into a logical and representative mathematical 

form. 

However, during the solution process using the elimination–substitution method, E32 

made errors in both the elimination step and the calculations, which initially led to an incorrect 

conclusion. The subject also did not use a flowchart for visualization. Nevertheless, E32 

realized the mistake and attempted to correct the result: 

“So, I changed 6x to –4x, and then 6z to –3z = –90,000, then z became 10,000, giving x = 

15,000. Then substituting into equation 1: x + y + z = 34,000, 15,000 + y + 10,000 = 34,000, 

so y = 9,000.” 

E32 also verified the result by substituting the variable values back into the original 

equations, expressing confidence in the final answer. This reflects the benefit of scaffolding, 

In the problem-solving process using the elimination–

substitution method, subject E32 made errors during the 

elimination and calculation steps, which initially led to an 
incorrect conclusion. Moreover, the subject did not provide a 

visual representation through a flowchart, indicating limited 

algorithmic thinking skills. 

The student demonstrates decomposition by 

breaking the problem into three variables and 

formulating them as a system of linear 

equations. Through pattern recognition and 
abstraction, the student identifies the equation 

structures and represents the situation 

symbolically as (x,y,z). 
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even though the initial procedural errors meant that the algorithmic thinking indicator was not 

fully met. 

This finding was consistent with that of subject E6, who had a mathematical disposition 

score of 67 (low category) and obtained a computational thinking score of 58.33 (low category). 

E6 was also only able to meet the indicators of decomposition, pattern recognition, and 

abstraction, but not algorithmic thinking. E6 could understand the problem information and 

create a simple mathematical model, but struggled to arrange and execute the problem-solving 

procedure logically and sequentially. The subject appeared hesitant, confused about which 

elimination steps to take, and did not verify the final results. 

 

Figure 7. Answer from E36 

Subject E36 was able to identify the given information, namely the prices of food 

packages (burgers, fries, and soda), as well as the required informationthe price of each 

individual item. E36 correctly assigned variables x, y, and z to represent the prices of burgers, 

fries, and soda, and set up a mathematical model in the form of three linear equations. However, 

E36 made an error in the elimination step, specifically in calculating 15x – 25x: 

“I changed 25x to 15x, so 15x – 15x = 0, and equation 3 should be 3x + z = 17,000.” 

After scaffolding, the subject was able to revise the solution and check it against the given 

equations. E36 concluded that for store A, the prices were: book = Rp 5,000, pencil = Rp 4,000, 

and eraser = Rp 2,000. However, E36 did not complete the solution for the entire problem, and 

was only able to solve for store A. 

Subject E36 successfully 

identified the given and 
required information by 

assigning variables x,y dan z 

to represent the prices of 

burgers, fries, and soda, and 
formulating three linear 

equations. However, an error 

occurred in the elimination 

step when calculating 

15x−25x. 
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“I haven’t gotten that far yet. I don’t know which one I should eliminate first.” 

This indicates that while E36 was able to manage most of the problem-solving steps, they 

still need to improve accuracy in managing calculations and working with larger numbers. In 

terms of algorithmic thinking, E36 was unable to produce logical and systematic steps. Overall, 

E36 met three computational thinking indicators decomposition, pattern recognition, and 

abstraction but did not meet the algorithmic thinking indicator. 

At the same time, the results revealed no participants with high CT disposition who 

exhibited low CT performance. This consistency indicates that while scaffolding provides 

significant benefits for learners with low or medium dispositions, students with high 

dispositions may have already achieved their optimal performance level. Consequently, this 

suggests a potential ceiling effect or selection bias within the sample, where high-achieving 

participants dominate the upper range of computational thinking outcomes. 

The following are the results of the analysis of computational thinking skills based on 

students’ levels of mathematical disposition. The symbol “√” indicates that the indicator was 

achieved. 

Table 4. Computational thinking skills in terms of students’ mathematical disposition 

Student 

Code 

Mathematical 

Disposition 

Computational 

Thinking  
Decomposition 

Pattern 

Recognition 
Abstraction 

Algorithmic 

Thinking 

E35 High 112 High 100 √ √ √ √ 

E12 High 105 High 91.67 √ √ √ √ 

E31 Medium 81 Medium 83.33 √ √ √ √ 

E29 Medium 76 Medium 70.83 √ √ √ – 

E32 Low 68 Medium 62.50 √ √ √ – 

E36 Low 67 Low 58.33 √ √ √ – 

Discussion 

The grouping of students’ mathematical dispositions had previously been categorized into three 

levels: high, medium, and low. From each category, two subjects were selected to analyze their 

computational thinking abilities. Mathematical disposition plays an essential role in developing 

students’ computational thinking skills (Pérez, 2018).  

Students with a high mathematical disposition, such as subjects E35 and E12, consistently 

demonstrated high performance across all computational thinking indicators decomposition, 

pattern recognition, abstraction, and algorithmic thinking. Both subjects were able to identify 

problem information in detail, construct a mathematical model in the form of a Three-Variable 

System of Linear Equations, and solve it using the determinant method illustrated through a 

flowchart. The flowchart served to display the algorithmic thinking indicator (Azmi & Ummah, 

2021), showing logical and systematic problem-solving steps. This indicates that a high 

mathematical disposition does not completely eliminate the possibility of errors. However, 

students with such dispositions tend to possess strong reflective and metacognitive abilities, 

enabling them to arrive at the correct solution through systematic and critical thinking. High 

mathematical disposition students also tend to take greater responsibility for their own learning 

and consistently cultivate good mathematical habits. The observation that high-disposition 

students showed greater initiative and persistence may reflect components of Self-
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Determination Theory, particularly the needs for autonomy and competence (Ryan & Deci, 

2000). These students appeared more confident in exploring alternative strategies without 

external prompts, demonstrating intrinsic motivation consistent with Zan et al. (2006), affective 

model of mathematical engagement, which emphasizes the role of emotional and motivational 

factors in shaping mathematical behavior. 

Students with a medium mathematical disposition, such as subjects E31 and E29, showed 

good results in computational thinking. The outcomes varied: one subject fulfilled all four 

indicators decomposition, pattern recognition, abstraction, and algorithmic thinking while the 

other only fulfilled up to the abstraction indicator. The limitation was caused by minor errors 

during problem-solving. In terms of algorithmic thinking, these students tended to be less 

systematic in their problem-solving steps, especially in creating flowcharts or performing 

variable elimination. However, with scaffolding, they were able to correct errors and reach the 

correct solution. Scaffolding plays an important role in helping students optimize their thinking 

abilities in solving mathematical problems (Fanchamps et al., 2021; Kamak & Mago, 2023; 

Romero & Ouellet, 2016). It can support and enhance students’ computational thinking by 

providing guiding questions, hints, reminders, directions, or prompts that encourage maximum 

engagement with computational thinking. This was evident from their progress, moving from 

only recognizing patterns to achieving abstraction and algorithmic thinking in mathematical 

problem solving (Supiarmo et al., 2021).  

Students with a low mathematical disposition, such as E32 and E36, were able to fulfill 

the decomposition, pattern recognition, and abstraction indicators but struggled with 

algorithmic thinking. While they could understand problem information and develop a 

mathematical model, they often made errors in calculations or equation-solving and were 

unable to create flowcharts to represent systematic and logical solution steps. After receiving 

scaffolding, E32 was able to correct mistakes, solve problems accurately, and draw appropriate 

conclusions. However, E36 could not correct errors, complete the problem correctly, or provide 

a suitable conclusion. Incomplete solution steps included failing to break down the given and 

required information, making computational mistakes, and not drawing a conclusion from the 

solution. These issues prevented them from reaching the algorithmic thinking stage of 

computational thinking (Supiarmo et al., 2021). Research by Sofiatun also shows that students 

with low dispositions often fail to meet all computational thinking indicators, with low affective 

attitudes generally fulfilling only the decomposition indicator (Azizia et al., 2023). 

However, this study reinforces that proper scaffolding during the learning process can 

help low-disposition students reach higher-order thinking stages, such as abstraction. This 

aligns with observations showing that students who previously could only organize basic 

information were able through guiding questions, examples, and visual aids like flowcharts to 

identify patterns and develop systematic solution steps. Therefore, a scaffolding-assisted 

learning strategy proves effective in bridging the gap between mathematical disposition and 

computational thinking ability. Students who initially struggled to understand problem 

structures can be gradually guided to develop more abstract and structured problem-solving 

strategies, particularly for complex topics such as the three-variable system of linear equations.  
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Moreover, the findings indicate that enhancing the CT skills of students with medium and 

low mathematical dispositions requires structured scaffolding, such as probing questions, hints, 

and partially completed flowcharts that guide them toward systematic reasoning (Reiser, 2018). 

During the interview sessions, scaffolding was provided consistently across participants 

through guided questioning, explicit cues, and motivational prompts, which helped them 

organize their problem-solving steps and correct conceptual errors. Nevertheless, it should also 

be noted that for some low-disposition students, the use of flowcharts might introduce 

additional cognitive load, as they struggled to translate abstract relationships into visual forms 

(Weintrop et al., 2016).  

These findings highlight that a scaffolding-assisted learning strategy is effective in 

bridging the gap between mathematical disposition and computational thinking ability, 

particularly in the context of Indonesian classrooms, where teacher-centered instruction often 

limits students’ autonomy and initiative (Doloma et al., 2020). Providing structured guidance 

within such environments can therefore serve as a compensatory mechanism that supports 

students in developing both conceptual understanding and problem-solving independence. 

Conclusion  

This study demonstrates that mathematical disposition functions not as a fixed trait but as a 

dynamic enabler of computational thinking, shaping how students engage in problem solving 

and reasoning. Students with higher mathematical disposition levels tend to organize their 

thoughts more systematically and engage more deeply with computational thinking indicators 

decomposition, pattern recognition, abstraction, and algorithmic thinking, particularly when 

supported by visual scaffolds such as flowcharts. Conversely, students with medium and low 

dispositions benefit significantly from structured scaffolding that helps them internalize these 

indicators in a gradual and reflective manner. 

In practice, enhancing students’ computational thinking can be achieved through three 

targeted strategies: (1) Partial flowcharts, which strengthen algorithmic thinking by helping 

learners visualize logical sequences step by step; (2) Think-aloud protocols, which support 

decomposition and abstraction as students articulate and reorganize their reasoning; and (3) 

Growth mindset interventions, which enhance pattern recognition and persistence by fostering 

confidence and positive learning attitudes. Together, these strategies show that scaffolding and 

disposition-building activities can bridge affective and cognitive aspects of computational 

learning. 

Future research should include experimental studies testing flowchart-based scaffolding 

interventions across different levels of mathematical disposition to establish causal 

relationships between disposition and computational thinking performance. Additionally, 

longitudinal and cross-cultural studies are encouraged to examine how cultural norms, 

instructional styles, and motivational factors shape the long-term development of computational 

thinking and mathematical disposition. 
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