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Abstract

Although Realistic Mathematics Education (RME) promotes deeper conceptual learning,
empirical evidence mapping different types of cognitive loads in university engineering
mathematics is limited. This mixed-methods study profiled intrinsic, extraneous, and germane
cognitive loads among 76 first-year aeronautical engineering students working on RME-based
task, a contextualized double integral problems modelling aircraft wing surface. We measured
load components with a CLT questionnaire that adapted from Leppink et.al and mental effort
with the Paas scale, then triangulated findings with student reflections and observations.
Correlations showed intrinsic and germane load related to students’ mental effort, while
extraneous load was minimal, suggesting clear task design. Multiple regression analysis
clarified that the germane load was the main unique predictor of mental effort, whereas intrinsic
complexity and extraneous factors contributed little uniquely. Qualitative data confirmed that
students used strategies such as breaking tasks into sub-steps, activating prior knowledge, and
peer explanation to manage effort. We propose an RME—-CLT alignment framework that
scaffolds intrinsic difficulty, minimizes extraneous processing, and cultivates germane
engagement through reflective context-rich tasks. The findings also inform the design of
cognitively efficient engineering-mathematics curricula. Thus, it offers practical guidance for
designing cognitively efficient engineering mathematics instruction and recommends future
studies using longitudinal and real-time measures.
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Introduction

Mathematics is a fundamental pillar of engineering education, providing the abstract reasoning
and quantitative analysis skills necessary for solving complex real-world problems. However,
traditional approaches to mathematics instruction in higher education often prioritize
procedural fluency and theoretical abstraction over contextual understanding, potentially
disengaging students from the practical applications of mathematics in their professional fields.
Realistic Mathematics Education (RME) reframes mathematics as a human activity situated in
authentic contexts and has demonstrated consistent benefits in K—12 settings while also
showing potential in higher education (Gravemeijer & Doorman, 1999; Juandi et al., 2022). In
simultaneously, applications of Cognitive Load Theory (CLT) in university STEM show that
education that decreases unnecessary load while scaffolding intrinsic complexity improves
learning efficiency (Goold & Devitt, 2020; Mayer & Moreno, 2016; Santoso & Sari, 2025).

In parallel, Cognitive Load Theory (CLT) offers a complementary framework for
optimizing learning efficiency by managing intrinsic, extraneous, and germane cognitive loads
(Mayer & Moreno, 2016; Paas et al., 1994; Sweller, 1988, 2011). Evidence from STEM
education indicates that instruction which reduces unnecessary processing while scaffolding
intrinsic complexity enhances conceptual learning and transfer (Goold & Devitt, 2020; Jong,
2010; Kalyuga, 2006). Integrating RME and CLT therefore provides a promising pathway to
balance realism with cognitive manageability in advanced mathematics instruction.

Despite these theoretical alignments, research directly combining RME and CLT in
university-level engineering mathematics remains limited. Recent studies in engineering
education highlight that engaging with abstract mathematical concepts can impose high
cognitive demands (Goold & Devitt, 2020; Juandi et al., 2022). Misalignment between task
complexity and learners’ cognitive capacity can lead to overload, whereas realistic contexts
may enhance meaning-making but increase intrinsic complexity. The CLT framework helps
mitigate this tension by managing intrinsic load (IL), minimizing extraneous load (EL), and
fostering germane load (GL) to support schema construction.

However, no prior study has simultaneously measured all three CLT load types, intrinsic,
extraneous, and germane, within RME-based tasks in university-level engineering
mathematics, especially in the aerospace domain. Addressing this gap requires understanding
how realistic contexts shape cognitive load distribution and how instructional design can
optimize mental effort for effective learning.

In this study, RME was operationalized for Calculus II through a didactical design
research (DDR) approach grounded in the emergent model principle (Gravemeijer, 1994).
Students engaged in an aerospace engineering task involving the estimation of an aircraft
wing’s surface area using double integrals, a context demanding conceptual reasoning,
visualization, and model interpretation. This design extends RME beyond its K—12 roots,
illustrating how contextual modelling can deepen conceptual engagement in advanced
engineering mathematics. The study aims to map cognitive load profiles across RME-based
learning and propose a practical RME-CLT alignment framework for cognitively efficient,
context-driven mathematics instruction in engineering education.
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Methods

This study used a mixed-methods design to gain a comprehensive understanding of students’
cognitive responses during RME based instruction. Quantitative and qualitative approaches
were integrated to enable data triangulation and deeper interpretation. The participants were 76
first-year aerospace engineering students enrolled in Calculus II at a private institute in
Yogyakarta during the 2024/2025 academic year, all of whom had completed at least one prior
mathematics course. These participants represented the entire cohort registered in the course;
hence, no random sampling was applied. While this complete sampling minimized voluntary
bias, the absence of randomization may limit the generalizability of findings beyond the studied
cohort.

The quantitative phase employed two validated instruments: the Paas Mental Effort
Rating Scale (Paas et al., 1994) and the cognitive load theory (CLT) Questionnaire adapted
from Leppink et al. (2013). The latter was translated into Indonesian and back-translated to
ensure conceptual equivalence, followed by pilot testing with 25 engineering students to assess
clarity and reliability. Cronbach’s o values indicated acceptable internal consistency for each
subscale: Intrinsic Load (o = 0.685), Extrancous Load (o = 0.762), and Germane Load (o =
0.83) as shown in figure 4. The 15-item, 5-point Likert CLT instrument measured IL, EL, and
GL, while the Paas scale captured overall mental effort. Four open-ended prompts captured
reflections on task difficulty, learning outcomes, and time/effort management, distributed via
Google Forms after each RME task.

The RME session consisted of a single application-oriented task lasting approximately
2.5 hours, replacing part of regular exercise time while maintaining syllabus alignment. The
task (Figure 1) asked students to use a double integral to estimate the surface area of an aircraft
wing section, linking calculus computation with aerodynamic interpretation.

Sebuah bagian kecil dari permukaan sayap pesawat dimodelkan dengan persamaan
A section of an aircraft wing is modeled by
z(z,y) = 0.0222 +0.03y, 0<z<2,0<y<4

where x and y are in meters.
dengan x dan y dalam meter.

Gunakan integral lipat dua untuk menghitung luas permukaan bagian sayap tersebut.
Use a double integral to estimate the surface area of the wing section.

s= ffye () + (%) aa

Figure 1. RME task to mapping the CLT

Students worked in small groups of 3—4 to encourage collaborative reasoning typical of
RME classrooms. Collaboration guidelines emphasized joint problem solving while ensuring
individual accountability through follow-up reflections. The questionnaire administration
occurred immediately after task completion to minimize recall bias. In addition, students
responded to four open-ended reflection prompts on task difficulty, learning outcomes, and
time—effort management. Qualitative data from classroom observations, semi-structured
interviews, and reflective journals were thematically analysed to interpret quantitative trends.

Multiple linear regression in SPSS v.26 examined the unique contributions of IL, EL, and
GL to mental effort (MERS). Semi-partial correlations quantified each predictor’s unique
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variance. Integration of both data strands provided a multidimensional profile of cognitive load
patterns, informing the design of an adaptive and contextually relevant framework for
engineering mathematics instruction.

The research adhered to the institutional research ethics guidelines of the host university.
As the study involved minimal risk and normal classroom activities, formal administrative
approval served as ethics clearance, and all participants provided informed consent prior to data
collection. No identifying information was recorded, and confidentiality was maintained
throughout the study.

Results

The results are presented by cognitive load component. As shown in Table 1, Items 1-5

measured IL, Items 6—-10 measured EL, and Items 11-15 measured GL. Item 16 (Paas)

measured overall subjective mental effort (MERS) to complement IL and EL interpretation.
Table 1. Presents the categorization of the questionnaire instruments

No Categorize Item Numbers Description
1 Intrinsic Load (IL) 1,2,3,4,5 Inherent complexity and demands
of the learning task
2 Extraneous Load (EL) 6,7,8,9,10 Unnecessary mental effort from

poor instructional design
3 Germane Load (GL) 11,12, 13, 14, 15 Conscious effort to integrate,
elaborate, and reflect
4  Mental Effort Rating 16 Total subjective mental effort (Paas
Scale (MERS) scale)

Descriptive Statistics

N Minimum  Maximum Mean Std. Deviation

Rata2_|L 76 3.00 5.00 3.9079 49471

Rata2_EL 76 1.00 4.00 2.4868 .70225

Rata2_GL 76 2.00 5.00 4.0658 66001

MERS 76 2.00 5.00 4.2632 83855
7

=

Valid N (listwise)

Figure 2. Descriptive statistics

As summarized in Figure 2, students reported relatively high intrinsic load (M =3.91, SD
=0.49) and germane load (M = 4.07, SD = 0.66), but lower extraneous load (M = 2.49, SD =
0.70), indicating that the RME task was cognitively demanding yet instructionally clear. The
overall mental effort (MERS) was moderate to high (M = 4.26, SD = 0.84), suggesting that
students invested substantial but manageable cognitive effort during the learning activity.
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Validity and reliability check for factor analysis

Scree Plot
5
+
E" 3
KMO and Bartlett's Test %
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .730 "g‘.
Bartlett's Test of Approx. Chi-Square 426.654
Sphericity df 105 ;
Sig .000
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Component Number

Figure 3. KMO analysis results

To ensure the validity of conducting factor analysis, the Kaiser-Meyer-Olkin (KMO)
measure was calculated, yielding a value of 0.730, which falls into the “middling” category
(0.70 — 0.79) according to Kaiser’s interpretation as seen in figure 3 above. This indicates that
the sample size is adequate for factor analysis. Bartlett’s Test of Sphericity was significant
(X*(105) = 426.65,p < .001), confirming item intercorrelation. The eigenvalue analysis
yielded three components exceeding 1.0 (4.725, 2.311, and 1.337), explaining 55.82% of the
total variance, and the scree plot showed a clear elbow after the third factor (Figure 3). These
results confirm a three-factor solution consistent with CLT, representing intrinsic, extraneous,
and germane load dimensions.

The factor analysis shows that the cognitive load of aerospace engineering students in
RME-based mathematics tasks can be grouped into three dimensions: IL, EL and GL, aligning
with CLT and confirming the validity of the adapted Leppink et al. (Leppink et al., 2013)
instrument. Overall, the three-factor solution supports theory and offers practical guidance:
match task complexity to prior knowledge, reduce extraneous elements, and design activities
that promote meaningful learning.

Reliability Statistics Reliability Statistics
Cronbach's Cronbach's
Alpha N of ltems Alpha N of ltems
.685 5 762 5
Item-Total Statistics Item-Total Statistics
S C Cronbach’s Scale Cronbach's
Scale Mean if Alpha if ltem Scale Mean if Variance if Alpha if ltem
Item Deleted Deleted ltem Deleted Item Deleted Deleted
IL1 16.0132 4253 342 673 EL1 10.5000 6.360 581 705
L2 15.7368 3.343 570 572 EL2 10.1184 6.106 571 705
IL3 15.5921 3.605 517 .601 EL3 10.5000 5.400 633 679
L4 15.8421 3.628 419 646 EL4 10.5132 6.493 428 754
IL5 151842 3.966 359 669 ELS 9.2632 6.436 456 745
(a) (b)
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Reliability Statistics

Cronbach's
Alpha N of ltems
830 5
Item-Total Statistics
Scale Corrected Cronbach's
Scale Mean if Variance if Iter otal Alpha if ltem
[tem Deleted [tem Deleted Correlation Deleted
GL1 15.9342 6.142 533 822
GL2 16.1842 6126 581 809
GL3 156.9605 5132 774 751
GL4 16.0921 5338 638 795
GL5 16.4079 5791 625 797

(c)
Figure 4. Reliability analysis results, (a) IL, (b) EL and (c) GL

Based on the reliability analysis results on figure 4, all items met the corrected item—total
correlation threshold (> 0.30). Cronbach’s a coefficients indicated good internal consistency,
supporting the instrument’s reliability for this population.

Correlation of cognitive load theory (CLT)

IL versus MERS
Correlations

MERS Rata2_IL
MERS Pearson Correlation 1 284
Sig. (2-tailed) 013
N 76 76
Rata2_IL  Pearson Correlation 284 1

Sig. (2-tailed) 013
N 76 76

* Correlation is significant at the 0.05 level (2-tailed)

Figure 5. Correlation Analysis Results (IL vs MERS)

The first analysis examined the relationship between intrinsic load (IL) and perceived
mental effort (MERS). The statistical test indicated a significant correlation on figure 5 (p =
0.013 < 0.05), although the effect size was small (r = 0.284), suggesting that the practical
influence of IL on overall mental effort is limited. This result implies that while the inherent
complexity of mathematical tasks and the number of interacting elements contribute to
cognitive load, their impact on mental effort is relatively modest. Student reflections and
observation notes clarify this pattern: a recurring theme was task decomposition, with many
students reporting that “breaking the problem into smaller steps made the task manageable.”
Others described prior-knowledge activation, stating that linking new tasks to familiar calculus
concepts reduced confusion. These patterns imply that although RME problems involve
inherent conceptual complexity, learners often deploy metacognitive strategies that attenuate
the practical effect of IL on overall effort.
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EL versus MERS
Correlations

MERS Rata2_EL
MERS Pearson Correlation 1 =017
Sig. (2-tailed) 886
N 76 76
Rata2_EL Pearson Correlation -017 1

Sig. (2-tailed) 886
N 76 76

Figure 6. Correlation analysis results (EL vs MERS)

The second analysis examined the relationship between extraneous load (EL) and
perceived mental effort (MERS). The correlation was negative but negligible (r = —0.017) and
statistically non-significant (p = 0.886 > 0.05) see figure 6, indicating EL had little measurable
impact on total cognitive load. Classroom observations and students’ reflections offer two
explanations: many participants reported clear problem statements and useful diagrams, one
student wrote, “the realistic problems made the math feel closer to real engineering”, and EL
scores showed little variability, which may reflect consistently well-designed tasks or limited
instrument sensitivity. Together, these findings suggest RME tasks minimized extraneous
processing, although measurement limits should be acknowledged

GL versus MERS
Correlations

MERS Rata2_GL
MERS Pearson Correlation 1 3rg”
Sig. (2-tailed) .001
N 76 76
Rata2_GL Pearson Correlation 378" 1

Sig. (2-tailed) .001
N 76 76

** Correlation is significant atthe 0.01 level (2-tailed)
Figure 7. Correlation analysis results (GL vs MERS)

The third analysis examined germane load (GL) versus perceived mental effort (MERS;
see Figure 7). The correlation was significant but modest (» = 0.378, p = .001), indicating that
students’ deliberate integration and reflection relate to higher mental effort but do not dominate
it. Interview excerpts and journals illustrate this germane processing, students reported model
building, reflective explanation, and peer discussion (e.g., “working in teams helped me focus
on key steps,” and “relating problems to aircraft contexts made me think more about why the
solution works”). These findings align with Cognitive Load Theory (Sweller, 2011), which
links germane processing to schema construction, while noting that other factors (prior
knowledge, task interactivity) also contribute to overall effort.
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Multiple regression analysis

Model Summaryb

Change Statistics

Adjusted R Std. Error of R Square Sig. F Durbin-
Model R R Square Square the Estimate Change F Change dn df2 Change Watson

1 4087 A67 132 78119 A67 4,806 3

-
]

.004 1.927

a. Predictors: (Constant), Rata2_GL, Rata2_EL, Rata2_|IL
b. Dependent Variable: MERS

Figure 8. Multiple regression analysis model summary

A multiple regression analysis was conducted to assess the unique effects of IL, EL and
GL on perceived mental effort (MERS) see figure 7 & 8. The overall model was significant,
F(3,72) =4.81, p = .004, explaining 16.7% of the variance in MERS (Adjusted R? =.132).

Coefficients”

Standardized

Unstandardized Coefficients Coefficients Correlations Collinearity Statistics
Model B Std. Error eta t Sig. Zero-order Partial Part Tolerance VIF
1 (Constant) 1.268 N 1.376 173
Rata2_IL 244 .207 144 1179 242 .284 138 27 778 1.285
Rata2_EL 120 134 .100 .896 373 -.017 105 .096 923 1.083
Rata2_GL 429 158 .338 2.709 .008 .378 .304 291 744 1.344

a. Dependent Variable: MERS

Figure 9. Multiple Regression Predicting Mental Effort (MERS) from Load Components

Among the predictors on figure 9, only germane load significantly predicted mental effort
(B=.338,t=2.71, p =.008), uniquely explaining 8.5% of the variance (part* = .085). Intrinsic
(B = .144, p = .242) and extraneous load (B = .100, p = .373) loads were non-significant.
Although the model accounted for a modest proportion of variance, this is expected in complex
cognitive settings where unmeasured factors, such as prior knowledge, mathematics anxiety, or
working-memory capacity, also influence mental effort (Kalyuga, 2007; Sweller, 2011).

The non-significant IL effect, despite the task’s conceptual complexity, likely reflects the
effectiveness of scaffolding and students’ compensatory strategies, such as task decomposition
and activation of prior knowledge, observed qualitatively. These behaviors may have attenuated
the perceived impact of intrinsic load by distributing effort across sub-steps.

Reflection data showed that students who described breaking problems into smaller steps
or collaborating on subtask explanations generally reported lower IL and higher GL scores,
whereas those expressing confusion about formulas or limits showed slightly higher MERS
ratings. This convergence confirms that metacognitive regulation in RME contexts reduces
intrinsic strain and enhances germane processing, consistent with CLT principles.

Implications for instructional framework

Table 2 summarizes the proposed RME-CLT framework, which was developed directly from
the tasks implemented in this study. Each design principle reflects how cognitive load was
managed during the Calculus II RME session. For example, the RME task (Figure 1)
represented the enhancement of germane load through contextual reflection linking surface area
computation to aerodynamic efficiency. The management of intrinsic load was addressed
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through progressive sequencing, starting from basic derivatives to applied differential
equations, while extraneous load was minimized through clear diagrams and structured
worksheets. Together, these strategies demonstrate how RME-based instruction operationalized
Cognitive Load Theory in a real aerospace engineering classroom.

Table 2. Proposed RME—CLT framework (Calculus in Aerospace Engineering)

Cogni.tivg Load Framework Strategy Concrete Example in Aerospace
Principle Context

Enhance Use context-rich, reflective ~ Students compute the surface area of a

Germane Load activities rectangular wing panel using a double
integral and discuss how curvature
coefficients affect aerodynamic lift
efficiency.

Manage Intrinsic ~ Progressive task sequencing  Students first review partial derivatives,

Load & scaffolding then apply them to construct and
evaluate the double integral for the
wing surface model.

Minimize Clear, concise instructional ~ Students follow a guided worksheet

Extraneous Load  design with structured steps and clear

diagrams to perform the double integral
calculation without redundant
information.

By systematically aligning these empirically validated design components, the proposed
framework enhances cognitive efficiency, deepens conceptual understanding, and reinforces
the professional relevance of mathematics learning in engineering contexts.

Discussion

The regression analysis revealed that GL was the only significant positive predictor of MERS,
while IL and EL were not significant. However, the effect size was modest (8 = 0.338; R* =
0.167), indicating that GL contributed meaningfully but not dominantly to the overall variance.
This suggests that while constructive cognitive engagement shaped students’ mental effort,
other unmeasured factors, such as prior knowledge, working-memory capacity, and motivation,
likely influenced cognitive load distribution.

Compared with previous studies where intrinsic load often exerts the strongest effect
among novice learners (Aditomo, 2014; Du et al., 2023; Gupta & Zheng, 2020; Klepsch &
Seufert, 2020), the current results highlight a different pattern. Here, GL’s relatively stronger
influence may reflect participants’ developing engineering identity, contextual task relevance,
and metacognitive maturity. These students were not pure novices; they had prior exposure to
applied calculus and could activate schema and strategies such as decomposition and reflection,
core components of self-regulated learning (Zimmerman, 2010), that channeled cognitive effort
toward meaning-making rather than struggling with task complexity. The RME context, linking
calculus to an aircraft wing model, may have further promoted germane processing by aligning
abstract mathematics with engineering reasoning.
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The proposed RME — CLT framework (Table 2) advances existing cognitive load design
principles by explicitly integrating contextual realism and guided reinvention into load
management strategies. Whereas classical CLT frameworks (Mayer & Moreno, 2016) or
expertise reversal models (Kalyuga, 2007) emphasize adaptive load adjustment based on
learner expertise, the current model extends these ideas to the RME paradigm, where intrinsic
complexity is introduced through authentic contexts but regulated via scaffolding and
reflection. This integration offers a concrete pathway to translate CLT principles into discipline-
specific, context-driven instruction for engineering mathematics.

Limitations must be acknowledged. First, the study’s cross-sectional design restricts
causal inference; longitudinal or experimental approaches would better capture how cognitive
load evolves across multiple RME cycles. Second, reliance on self-report measures may
introduce bias, as CLT questionnaires can blur distinctions between load types (Greenberg &
Zheng, 2023; Orru & Longo, 2019). Combining self-reports with objective indicators such as
response time, eye-tracking, or physiological measures would strengthen validity. Third,
findings derive from a single RME task focused on surface-area integration; cognitive patterns
may differ for other mathematical topics such as differential equations or vector calculus. Future
research should test the framework across multiple RME contexts to confirm its
generalizability.

In summary, the results indicate that germane engagement plays a significant yet partial
role in students’ mental effort, mediated by contextual understanding and metacognitive
regulation. The study contributes to theory by aligning CLT and RME within a practical
instructional model that balances conceptual depth, task realism, and cognitive efficiency in
engineering mathematics.

Conclusion

This study demonstrates that well-designed RME tasks in engineering mathematics can channel
cognitive resources toward productive schema construction (germane load) while minimizing
extraneous demands, even when intrinsic complexity is high. By integrating realistic contexts
with guided reinvention and structured scaffolding, RME enables learners to engage deeply
with conceptual understanding without cognitive overload. The proposed RME-CLT
instructional framework provides a practical model for balancing realism, reflection, and
efficiency in higher education mathematics.

Future research should extend this work through experimental comparisons between
RME-based and traditional instruction to examine causal effects on learning efficiency;
longitudinal tracking of cognitive load profiles across multiple mathematics courses to capture
developmental patterns; and cross-disciplinary replications in fields such as mechanical or civil
engineering to test the generalizability of the framework. Such studies would strengthen
evidence for designing cognitively efficient, contextually meaningful instruction in STEM
education.
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