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Abstract   

Although Realistic Mathematics Education (RME) promotes deeper conceptual learning, 

empirical evidence mapping different types of cognitive loads in university engineering 

mathematics is limited. This mixed-methods study profiled intrinsic, extraneous, and germane 

cognitive loads among 76 first-year aeronautical engineering students working on RME-based 

task, a contextualized double integral problems modelling aircraft wing surface. We measured 

load components with a CLT questionnaire that adapted from Leppink et.al and mental effort 

with the Paas scale, then triangulated findings with student reflections and observations. 

Correlations showed intrinsic and germane load related to students’ mental effort, while 

extraneous load was minimal, suggesting clear task design. Multiple regression analysis 

clarified that the germane load was the main unique predictor of mental effort, whereas intrinsic 

complexity and extraneous factors contributed little uniquely. Qualitative data confirmed that 

students used strategies such as breaking tasks into sub-steps, activating prior knowledge, and 

peer explanation to manage effort. We propose an RME–CLT alignment framework that 

scaffolds intrinsic difficulty, minimizes extraneous processing, and cultivates germane 

engagement through reflective context-rich tasks. The findings also inform the design of 

cognitively efficient engineering-mathematics curricula. Thus, it offers practical guidance for 

designing cognitively efficient engineering mathematics instruction and recommends future 

studies using longitudinal and real-time measures. 
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Introduction 

Mathematics is a fundamental pillar of engineering education, providing the abstract reasoning 

and quantitative analysis skills necessary for solving complex real-world problems. However, 

traditional approaches to mathematics instruction in higher education often prioritize 

procedural fluency and theoretical abstraction over contextual understanding, potentially 

disengaging students from the practical applications of mathematics in their professional fields. 

Realistic Mathematics Education (RME) reframes mathematics as a human activity situated in 

authentic contexts and has demonstrated consistent benefits in K–12 settings while also 

showing potential in higher education (Gravemeijer & Doorman, 1999; Juandi et al., 2022). In 

simultaneously, applications of Cognitive Load Theory (CLT) in university STEM show that 

education that decreases unnecessary load while scaffolding intrinsic complexity improves 

learning efficiency (Goold & Devitt, 2020; Mayer & Moreno, 2016; Santoso & Sari, 2025). 

In parallel, Cognitive Load Theory (CLT) offers a complementary framework for 

optimizing learning efficiency by managing intrinsic, extraneous, and germane cognitive loads 

(Mayer & Moreno, 2016; Paas et al., 1994; Sweller, 1988, 2011). Evidence from STEM 

education indicates that instruction which reduces unnecessary processing while scaffolding 

intrinsic complexity enhances conceptual learning and transfer (Goold & Devitt, 2020; Jong, 

2010; Kalyuga, 2006). Integrating RME and CLT therefore provides a promising pathway to 

balance realism with cognitive manageability in advanced mathematics instruction. 

Despite these theoretical alignments, research directly combining RME and CLT in 

university-level engineering mathematics remains limited. Recent studies in engineering 

education highlight that engaging with abstract mathematical concepts can impose high 

cognitive demands (Goold & Devitt, 2020; Juandi et al., 2022). Misalignment between task 

complexity and learners’ cognitive capacity can lead to overload, whereas realistic contexts 

may enhance meaning-making but increase intrinsic complexity. The CLT framework helps 

mitigate this tension by managing intrinsic load (IL), minimizing extraneous load (EL), and 

fostering germane load (GL) to support schema construction. 

However, no prior study has simultaneously measured all three CLT load types, intrinsic, 

extraneous, and germane, within RME-based tasks in university-level engineering 

mathematics, especially in the aerospace domain. Addressing this gap requires understanding 

how realistic contexts shape cognitive load distribution and how instructional design can 

optimize mental effort for effective learning. 

In this study, RME was operationalized for Calculus II through a didactical design 

research (DDR) approach grounded in the emergent model principle (Gravemeijer, 1994). 

Students engaged in an aerospace engineering task involving the estimation of an aircraft 

wing’s surface area using double integrals, a context demanding conceptual reasoning, 

visualization, and model interpretation. This design extends RME beyond its K–12 roots, 

illustrating how contextual modelling can deepen conceptual engagement in advanced 

engineering mathematics. The study aims to map cognitive load profiles across RME-based 

learning and propose a practical RME-CLT alignment framework for cognitively efficient, 

context-driven mathematics instruction in engineering education. 



 
Mapping cognitive load profiles in realistic mathematics education: A study with ... 

 

1020 
 

Methods   

This study used a mixed-methods design to gain a comprehensive understanding of students’ 

cognitive responses during RME based instruction. Quantitative and qualitative approaches 

were integrated to enable data triangulation and deeper interpretation. The participants were 76 

first-year aerospace engineering students enrolled in Calculus II at a private institute in 

Yogyakarta during the 2024/2025 academic year, all of whom had completed at least one prior 

mathematics course. These participants represented the entire cohort registered in the course; 

hence, no random sampling was applied. While this complete sampling minimized voluntary 

bias, the absence of randomization may limit the generalizability of findings beyond the studied 

cohort. 

The quantitative phase employed two validated instruments: the Paas Mental Effort 

Rating Scale (Paas et al., 1994) and the cognitive load theory (CLT) Questionnaire adapted 

from Leppink et al. (2013). The latter was translated into Indonesian and back-translated to 

ensure conceptual equivalence, followed by pilot testing with 25 engineering students to assess 

clarity and reliability. Cronbach’s α values indicated acceptable internal consistency for each 

subscale: Intrinsic Load (α = 0.685), Extraneous Load (α = 0.762), and Germane Load (α = 

0.83) as shown in figure 4. The 15-item, 5-point Likert CLT instrument measured IL, EL, and 

GL, while the Paas scale captured overall mental effort. Four open-ended prompts captured 

reflections on task difficulty, learning outcomes, and time/effort management, distributed via 

Google Forms after each RME task. 

The RME session consisted of a single application-oriented task lasting approximately 

2.5 hours, replacing part of regular exercise time while maintaining syllabus alignment. The 

task (Figure 1) asked students to use a double integral to estimate the surface area of an aircraft 

wing section, linking calculus computation with aerodynamic interpretation.  

 
Figure 1. RME task to mapping the CLT 

Students worked in small groups of 3–4 to encourage collaborative reasoning typical of 

RME classrooms. Collaboration guidelines emphasized joint problem solving while ensuring 

individual accountability through follow-up reflections. The questionnaire administration 

occurred immediately after task completion to minimize recall bias. In addition, students 

responded to four open-ended reflection prompts on task difficulty, learning outcomes, and 

time–effort management. Qualitative data from classroom observations, semi-structured 

interviews, and reflective journals were thematically analysed to interpret quantitative trends. 

Multiple linear regression in SPSS v.26 examined the unique contributions of IL, EL, and 

GL to mental effort (MERS). Semi-partial correlations quantified each predictor’s unique 

A section of an aircraft wing is modeled by 

where x and y are in meters. 

Use a double integral to estimate the surface area of the wing section. 
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variance. Integration of both data strands provided a multidimensional profile of cognitive load 

patterns, informing the design of an adaptive and contextually relevant framework for 

engineering mathematics instruction. 

The research adhered to the institutional research ethics guidelines of the host university. 

As the study involved minimal risk and normal classroom activities, formal administrative 

approval served as ethics clearance, and all participants provided informed consent prior to data 

collection. No identifying information was recorded, and confidentiality was maintained 

throughout the study. 

Results  

The results are presented by cognitive load component. As shown in Table 1, Items 1–5 

measured IL, Items 6–10 measured EL, and Items 11–15 measured GL. Item 16 (Paas) 

measured overall subjective mental effort (MERS) to complement IL and EL interpretation. 

Table 1.  Presents the categorization of the questionnaire instruments 

No Categorize Item Numbers Description 

1 Intrinsic Load (IL) 1, 2, 3, 4, 5 Inherent complexity and demands 

of the learning task 

2 Extraneous Load (EL) 6, 7, 8, 9, 10 Unnecessary mental effort from 

poor instructional design 

3 Germane Load (GL) 11, 12, 13, 14, 15 Conscious effort to integrate, 

elaborate, and reflect 

4 Mental Effort Rating 

Scale (MERS) 

16 Total subjective mental effort (Paas 

scale) 

 

 

Figure 2. Descriptive statistics 

As summarized in Figure 2, students reported relatively high intrinsic load (M = 3.91, SD 

= 0.49) and germane load (M = 4.07, SD = 0.66), but lower extraneous load (M = 2.49, SD = 

0.70), indicating that the RME task was cognitively demanding yet instructionally clear. The 

overall mental effort (MERS) was moderate to high (M = 4.26, SD = 0.84), suggesting that 

students invested substantial but manageable cognitive effort during the learning activity. 
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Validity and reliability check for factor analysis 

  

 

 

 

 

 

 

 

 

 

Figure 3. KMO analysis results 

To ensure the validity of conducting factor analysis, the Kaiser-Meyer-Olkin (KMO) 

measure was calculated, yielding a value of 0.730, which falls into the “middling” category 

(0.70 – 0.79) according to Kaiser’s interpretation as seen in figure 3 above. This indicates that 

the sample size is adequate for factor analysis. Bartlett’s Test of Sphericity was significant 

(𝑋²(105)  =  426.65, 𝑝 <  .001), confirming item intercorrelation. The eigenvalue analysis 

yielded three components exceeding 1.0 (4.725, 2.311, and 1.337), explaining 55.82% of the 

total variance, and the scree plot showed a clear elbow after the third factor (Figure 3). These 

results confirm a three-factor solution consistent with CLT, representing intrinsic, extraneous, 

and germane load dimensions. 

The factor analysis shows that the cognitive load of aerospace engineering students in 

RME-based mathematics tasks can be grouped into three dimensions: IL, EL and GL, aligning 

with CLT and confirming the validity of the adapted Leppink et al. (Leppink et al., 2013) 

instrument. Overall, the three-factor solution supports theory and offers practical guidance: 

match task complexity to prior knowledge, reduce extraneous elements, and design activities 

that promote meaningful learning. 

 

(a)      (b) 
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(c) 

Figure 4. Reliability analysis results, (a) IL, (b) EL and (c) GL 

Based on the reliability analysis results on figure 4, all items met the corrected item–total 

correlation threshold (> 0.30). Cronbach’s α coefficients indicated good internal consistency, 

supporting the instrument’s reliability for this population. 

Correlation of cognitive load theory (CLT)  

IL versus MERS 

 
Figure 5. Correlation Analysis Results (IL vs MERS) 

The first analysis examined the relationship between intrinsic load (IL) and perceived 

mental effort (MERS). The statistical test indicated a significant correlation on figure 5 (p = 

0.013 < 0.05), although the effect size was small (r = 0.284), suggesting that the practical 

influence of IL on overall mental effort is limited. This result implies that while the inherent 

complexity of mathematical tasks and the number of interacting elements contribute to 

cognitive load, their impact on mental effort is relatively modest. Student reflections and 

observation notes clarify this pattern: a recurring theme was task decomposition, with many 

students reporting that “breaking the problem into smaller steps made the task manageable.” 

Others described prior-knowledge activation, stating that linking new tasks to familiar calculus 

concepts reduced confusion. These patterns imply that although RME problems involve 

inherent conceptual complexity, learners often deploy metacognitive strategies that attenuate 

the practical effect of IL on overall effort. 
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EL versus MERS 

 
Figure 6. Correlation analysis results  (EL vs MERS) 

The second analysis examined the relationship between extraneous load (EL) and 

perceived mental effort (MERS). The correlation was negative but negligible (r = –0.017) and 

statistically non-significant (p = 0.886 > 0.05) see figure 6, indicating EL had little measurable 

impact on total cognitive load. Classroom observations and students’ reflections offer two 

explanations: many participants reported clear problem statements and useful diagrams, one 

student wrote, “the realistic problems made the math feel closer to real engineering”, and EL 

scores showed little variability, which may reflect consistently well-designed tasks or limited 

instrument sensitivity. Together, these findings suggest RME tasks minimized extraneous 

processing, although measurement limits should be acknowledged 

GL versus MERS 

 

Figure 7. Correlation analysis results (GL vs MERS) 

The third analysis examined germane load (GL) versus perceived mental effort (MERS; 

see Figure 7). The correlation was significant but modest (r = 0.378, p = .001), indicating that 

students’ deliberate integration and reflection relate to higher mental effort but do not dominate 

it. Interview excerpts and journals illustrate this germane processing, students reported model 

building, reflective explanation, and peer discussion (e.g., “working in teams helped me focus 

on key steps,” and “relating problems to aircraft contexts made me think more about why the 

solution works”). These findings align with Cognitive Load Theory (Sweller, 2011), which 

links germane processing to schema construction, while noting that other factors (prior 

knowledge, task interactivity) also contribute to overall effort. 
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Multiple regression analysis 

 

Figure 8. Multiple regression analysis model summary 

A multiple regression analysis was conducted to assess the unique effects of IL, EL and 

GL on perceived mental effort (MERS) see figure 7 & 8. The overall model was significant, 

F(3,72) = 4.81, p = .004, explaining 16.7% of the variance in MERS (Adjusted R² = .132).  

 

Figure 9. Multiple Regression Predicting Mental Effort (MERS) from Load Components 

Among the predictors on figure 9, only germane load significantly predicted mental effort 

(β = .338, t = 2.71, p = .008), uniquely explaining 8.5% of the variance (part² = .085). Intrinsic 

(β = .144, p = .242) and extraneous load (β = .100, p = .373) loads were non-significant. 

Although the model accounted for a modest proportion of variance, this is expected in complex 

cognitive settings where unmeasured factors, such as prior knowledge, mathematics anxiety, or 

working-memory capacity, also influence mental effort (Kalyuga, 2007; Sweller, 2011). 

The non-significant IL effect, despite the task’s conceptual complexity, likely reflects the 

effectiveness of scaffolding and students’ compensatory strategies, such as task decomposition 

and activation of prior knowledge, observed qualitatively. These behaviors may have attenuated 

the perceived impact of intrinsic load by distributing effort across sub-steps. 

Reflection data showed that students who described breaking problems into smaller steps 

or collaborating on subtask explanations generally reported lower IL and higher GL scores, 

whereas those expressing confusion about formulas or limits showed slightly higher MERS 

ratings. This convergence confirms that metacognitive regulation in RME contexts reduces 

intrinsic strain and enhances germane processing, consistent with CLT principles. 

Implications for instructional framework 

Table 2 summarizes the proposed RME–CLT framework, which was developed directly from 

the tasks implemented in this study. Each design principle reflects how cognitive load was 

managed during the Calculus II RME session. For example, the RME task (Figure 1) 

represented the enhancement of germane load through contextual reflection linking surface area 

computation to aerodynamic efficiency. The management of intrinsic load was addressed 
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through progressive sequencing, starting from basic derivatives to applied differential 

equations, while extraneous load was minimized through clear diagrams and structured 

worksheets. Together, these strategies demonstrate how RME-based instruction operationalized 

Cognitive Load Theory in a real aerospace engineering classroom. 

Table 2. Proposed RME–CLT framework  (Calculus in Aerospace Engineering) 

Cognitive Load 

Principle 
Framework Strategy 

Concrete Example in Aerospace 

Context 

Enhance 

Germane Load 

Use context-rich, reflective 

activities 

Students compute the surface area of a 

rectangular wing panel using a double 

integral and discuss how curvature 

coefficients affect aerodynamic lift 

efficiency. 

Manage Intrinsic 

Load 

Progressive task sequencing 

& scaffolding 

Students first review partial derivatives, 

then apply them to construct and 

evaluate the double integral for the 

wing surface model. 

Minimize 

Extraneous Load 

Clear, concise instructional 

design 

Students follow a guided worksheet 

with structured steps and clear 

diagrams to perform the double integral 

calculation without redundant 

information. 

 

By systematically aligning these empirically validated design components, the proposed 

framework enhances cognitive efficiency, deepens conceptual understanding, and reinforces 

the professional relevance of mathematics learning in engineering contexts.  

Discussion  

The regression analysis revealed that GL was the only significant positive predictor of MERS, 

while IL and EL were not significant. However, the effect size was modest (𝛽 =  0.338;  𝑅² =

 0.167), indicating that GL contributed meaningfully but not dominantly to the overall variance. 

This suggests that while constructive cognitive engagement shaped students’ mental effort, 

other unmeasured factors, such as prior knowledge, working-memory capacity, and motivation, 

likely influenced cognitive load distribution. 

Compared with previous studies where intrinsic load often exerts the strongest effect 

among novice learners (Aditomo, 2014; Du et al., 2023; Gupta & Zheng, 2020; Klepsch & 

Seufert, 2020), the current results highlight a different pattern. Here, GL’s relatively stronger 

influence may reflect participants’ developing engineering identity, contextual task relevance, 

and metacognitive maturity. These students were not pure novices; they had prior exposure to 

applied calculus and could activate schema and strategies such as decomposition and reflection, 

core components of self-regulated learning (Zimmerman, 2010), that channeled cognitive effort 

toward meaning-making rather than struggling with task complexity. The RME context, linking 

calculus to an aircraft wing model, may have further promoted germane processing by aligning 

abstract mathematics with engineering reasoning. 



 
Rindu Alriavindra Funny, Fajar Khanif Rahmawati 
 

1027 
 

The proposed RME – CLT framework (Table 2) advances existing cognitive load design 

principles by explicitly integrating contextual realism and guided reinvention into load 

management strategies. Whereas classical CLT frameworks (Mayer & Moreno, 2016)   or 

expertise reversal models (Kalyuga, 2007) emphasize adaptive load adjustment based on 

learner expertise, the current model extends these ideas to the RME paradigm, where intrinsic 

complexity is introduced through authentic contexts but regulated via scaffolding and 

reflection. This integration offers a concrete pathway to translate CLT principles into discipline-

specific, context-driven instruction for engineering mathematics.  

Limitations must be acknowledged. First, the study’s cross-sectional design restricts 

causal inference; longitudinal or experimental approaches would better capture how cognitive 

load evolves across multiple RME cycles. Second, reliance on self-report measures may 

introduce bias, as CLT questionnaires can blur distinctions between load types (Greenberg & 

Zheng, 2023; Orru & Longo, 2019). Combining self-reports with objective indicators such as 

response time, eye-tracking, or physiological measures would strengthen validity. Third, 

findings derive from a single RME task focused on surface-area integration; cognitive patterns 

may differ for other mathematical topics such as differential equations or vector calculus. Future 

research should test the framework across multiple RME contexts to confirm its 

generalizability. 

In summary, the results indicate that germane engagement plays a significant yet partial 

role in students’ mental effort, mediated by contextual understanding and metacognitive 

regulation. The study contributes to theory by aligning CLT and RME within a practical 

instructional model that balances conceptual depth, task realism, and cognitive efficiency in 

engineering mathematics. 

Conclusion  

This study demonstrates that well-designed RME tasks in engineering mathematics can channel 

cognitive resources toward productive schema construction (germane load) while minimizing 

extraneous demands, even when intrinsic complexity is high. By integrating realistic contexts 

with guided reinvention and structured scaffolding, RME enables learners to engage deeply 

with conceptual understanding without cognitive overload. The proposed RME–CLT 

instructional framework provides a practical model for balancing realism, reflection, and 

efficiency in higher education mathematics. 

Future research should extend this work through experimental comparisons between 

RME-based and traditional instruction to examine causal effects on learning efficiency; 

longitudinal tracking of cognitive load profiles across multiple mathematics courses to capture 

developmental patterns; and cross-disciplinary replications in fields such as mechanical or civil 

engineering to test the generalizability of the framework. Such studies would strengthen 

evidence for designing cognitively efficient, contextually meaningful instruction in STEM 

education. 
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