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Abstract 

Mathematics inequality is an essential concept that students should fully understand since it is 

required in mathematical modeling and linear programming. However, students tend to 

perceive the solution of the inequalities problem without considering what the solution of 

inequality means. This study aims to describe students’ mistakes variations in solving 

mathematical inequality. It is necessary since solving inequality is a necessity for students to 

solve everyday problems modeled in mathematics. Thirty-eight female and male students of 

12th-grade who have studied inequalities are involved in this study. They are given three 

inequality problems which are designed to find out students’ mistakes related to the change of 

inequality sign, determine the solution, and involve absolute value. All student work documents 

were analyzed for errors and misconceptions that emerged and then categorized based on the 

type of error, namely errors in applying inequality rules, errors in algebraic operations, or errors 

in determining the solution set, then described. The result shows that there were some errors 

and misconceptions that students made caused by still bringing the concept of equality when 

solving the inequalities problem. It made them did not aware of the inequality sign. Students 

are still less thorough in operating algebra and do not understand the number line concept in 

solving inequalities. The other factor was giving “fast strategy” to the students without 

considering the students’ understanding.    
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Introduction 

Mathematics is always used to solve problems in other fields like biology, physics, chemistry 

(Li & Schoenfeld, 2019). We also often use mathematics to solve daily problems (Amalia et 

al., 2017; Widana, 2021). It can be said that mathematics is essential to understand. One of the 

mathematical concepts that students must understand is mathematical modeling. Mathematical 

modeling uses mathematics to illustrate and analyze real-world problems using the language of 

mathematics (Garfunkel et al., 2016).  

Inequality is one of the requirements for students to model mathematics (Arseven, 2015). 

Mathematical inequalities are essential because they relate to other topics such as equations and 

their real-life applications (Moon, 2019). Solving equations and inequalities is essential in 

algebra, mainly its functions and applications (Mokh et al., 2019). It requires students to 

understand the method in finding the solution set for each inequality and equation (El-khateeb, 

2016). Unfortunately, students tend to perceive the solution of the inequalities problem without 

considering what the solution of inequality means (Taqiyuddin et al., 2017). Hence, 

understanding and solving linear and quadratic equality and inequality are a necessity for all 

students.  

There are three categories of conceptual errors in students’ problem-solving work in 

inequalities based on Agung et al. (2021): error in algebraic operations, error in applying 

inequality rule, error in determining the solution set. Some mistakes that found in students grade 

7,8,9,10 were combining unlike terms such as moving, deleting, or adding a variable, moving 

a term without changing its sign, changing/ not changing the direction of the inequality sign 

when inappropriate (Booth, Barbieri, Eyer, & Paré-Blagoev, 2014). First undergraduate 

students make errors in algebraic operations, determine the solution set, and apply the inequality 

rule (Agung et al., 2021). Most of the students incorrectly answer the question in conducting 

the algebraic operation (Daud & Ayub, 2019; Saputro et al., 2018; Taqiyuddin et al., 2017). 

However, there are still rare research results on student errors in solving inequalities in 12th 

grade. Based on this fact, we want to know what is also happening in students of 12th-grade 

high school. Moreover, we also want to know the factors that could make the mistakes and how 

they influence their understanding of the concept of inequalities itself.    

This study aimed to know the students of 12th grade high school knowledge about the 

concept of inequalities, especially on the error made when solving the inequality problems and 

its reason. The result of this study can be used as the consideration for the teacher to teach the 

same materials for the next academic years. Moreover, it also can be used as preliminary 

guidelines for further research.  

Methods 

This study involved 38 students (30 female and eight male) of 12th-grade high school which 

already learned how to solve inequalities. The students are given three problems which have 

been said as valid by the validator, expertise in mathematics education. The three problems are 

about three different types of inequality and how to solve them.  The question is aimed to 
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explore students’ ability in solving questions related to inequalities and finding common 

mistake that occurs during the process of finding the solution to inequalities. 

The given three problems about inequalities are, 

1. Find the value of 𝑎 which satisfy: 𝑎 − 3 ≥ 3𝑎 − 9. 

2. Find the solution of (𝑥 + 2)(𝑥 − 1)(𝑥 − 3) > 0. 

3. Given, |𝑎 − 3| < |3𝑎 − 9|. Determine the solution of the given inequality. 

Problem 1 is given to find out students’ behavior in solving linear inequality related to 

the number and or variable operations—especially division and multiplication by negative 

number and its relation with the inequality sign. Problem 2 is used to find out students’ behavior 

in solving inequalities that involve polynomials. However, we do not focus on finding students’ 

abilities or difficulties in factorizing the polynomial. We only want to know about students’ 

thinking in determining the interval of possible solutions and determining the correct interval 

that satisfies the given inequality. While problem 3 is about solving inequality, which involves 

absolute value. Since the form is |𝑥| < |𝑦| it will lead to quadratic inequality. We want to 

challenge students concept of determining the interval of solution which they had since 

secondary school, which is labelling the interval by “+” and “-“ consecutively.  

From the 38 students’ answers, there are three error types: error in determining solution 

set, error in algebraic operation, and error in applying inequality rule (Agung et al., 2021). All 

the variations of error that happened in each category are qualitatively described. The students’ 

reasons for their answers are dug through interviews. The interview is done for the students 

who represent each variation of error.   

Results  

The 38 students’ answers to three given questions are analyzed, coded, and categorized into 

three categories of error: error in determining solution set, error in algebraic operation, and error 

in applying inequality rule (Agung et al., 2021). Each type of error is analyzed further and coded 

based on the error variation. We found two different errors for the first category, errors in 

applying the inequality rule. As for the second category, errors in algebraic operations, there 

are two errors. In the last category, the error in determining solution set, seven different errors 

occur. The error variations of each category are shown in Table 1. 

Table 1. Error variation for each category 

Question 
Wrong 

Answer 

Error 

Category 

Number of 

students 

who make 

the error 

Error variation 

 

1 25 errors in 

applying the 

inequality rule 

20 

 

1) Students do not 

change the inequality 

sign as he divide the 

inequality with 

negative number 
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Question 
Wrong 

Answer 

Error 

Category 

Number of 

students 

who make 

the error 

Error variation 

 

   5 2) Students does not 

understand the 

meaning of 6 ≥ 2𝑎. 

 2 errors in 

algebraic 

operations 

1 3) Student’ mistake in 

eliminating a 

constant in an 

inequality 

   1 4) Does not know what 

to be done in the next 

step 

2 10 error in 

determining 

solution set 

3 5) Students mistake 

related to the 

procedure called 

finding the value of x 

which makes a zero. 

   7 6) Students mistaken 

(𝑥 + 2)(𝑥 − 1)(𝑥 −
3) > 0 as (𝑥 +
2)(𝑥 − 1)(𝑥 − 3) =
0. 

3 36 error in 

determining 

solution set 

case of 

absolute value 

inequality 

26 7) Students get a wrong 

conclusion about 
(𝑎 − 3)(𝑎 − 3) > 0. 

   5 8) Students only check 

one possible range of 

solution. 

   3 9) Students wrong 

definition of |𝑎 −
3| < |3𝑎 − 9| 

   1 10) Student conclude that 

the value of 𝑥 which 

makes zero, as the 

solution of the 

inequality. 

   1 11) Student thinking of 

𝑎 − 3 >  √0 

Even though students have already learned about solving inequality, several errors 

occurred in each question and category. The most error occurred in determining the solution set 

category, especially those involving absolute value. Students make a wrong conclusion about 

(𝑎 − 3)(𝑎 − 3) > 0. They believe that the solution is (𝑎 − 3) > 0 so that 𝑎 > 3. The second 

last common error happens is that students do not change the inequality sign as he divides the 
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inequality with a negative number. It means that teacher needs to pay more attention to those 

errors when teaching mathematics inequality. 

Another thing to be noted is that most students do not check each range of possible 

solutions. Instead, they check one possibility and then consecutively put “+, -“signs. It can be 

seen that while answering question 3, five students only check one possible range of solutions. 

The same tendency was also found out while looking at students’ correct answers on question 

2, in which they only checked one possible solution range.  

In order to find out more about the students’ errors, we chose a subject to represent each 

error variation, analyzed their works, and interviewed them regarding their thinking if needed. 

The description of each variation of students’ error while solving three questions related to 

mathematics inequality and its reason follows. 

Error in inequality rule 

Given question 1: 𝒂 − 𝟑 ≥ 𝟑𝒂 − 𝟗 with aims to challenge students’ mistake related to the 

change of inequality sign as it multiplied by or divided by negative number. 

 

Figure 1. Students does not change the inequality sign as he divide the inequality with 

negative number 

Figure 1 tells that the students do not change the direction of the inequality sign after he 

multiplied or divided the inequality with -1 (row 4th). The properties of real numbers related to 

this were already given, yet they still make this mistake.  

One student tried to check whether the obtained solution was correct or not by substituting 

one value of to the inequality. As we can see from Figure 1, he obtained the solution of 𝑎 −

3 ≥ 3𝑎 − 9 is 𝑎 ≥ 3 which is actually incorrect, the correct one is 𝑎 ≤ 3. However, when he 

checks his answer by only substituting the value of equals 3 to the inequality, the result shows 

that his answer is correct. It is happened since 𝑎 = 3 is a solution. However, the chosen value 

does not represent all the solution. He does not check for 𝑎 > 3, 𝑎 ∈ 𝑅, yet conclude that his 

solution is satisfy the inequality. Based on the interview, it is known that he doesn’t fully 

understand that 𝑎 ≥ 3 is 𝑎 = 3 or 𝑎 > 3. 

Another mistake that occurs during the process of solving the given inequality is that five 

students indicate that they do not understand the meaning of 6 ≥ 2𝑎 (Figure 2). 

 

Figure 2. Students do not understand the meaning of 6 ≥ 2𝑎 

𝑎 − 3 ≥ 3𝑎 − 9 

𝑎 − 3𝑎 ≥ 3 − 9 

−2𝑎 ≥ −6 

2𝑎 ≥ 6 

𝑎 ≥ 3   can be proved 2𝑎 ≥ 6 

6 ≥ 6 

 

𝑎 − 3 ≥ 3𝑎 − 9 

−3 + 9 ≥ 3𝑎 − 𝑎 

6 ≥ 2𝑎 

𝑎 ≥ 3 
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In other words, we often write the solution with variables first. However, it is known that 

they only change the position of the variable and the scalar by ignoring the direction of the 

inequality sign. It means that they do not find the meaning of the inequality sign meaningful, 

or he does not understand what the inequality (6 ≥ 2𝑎) means. What is essential for them is 

only the operation of the numbers. One of the reasons found out from the interview is that they 

only follow the procedure explained or given as an example by the teacher when studying the 

inequality. 

Error in algebraic operation 

There is a student who thinks that to solve 𝒂 − 𝟑 ≥ 𝟑𝒂 − 𝟗, just eliminate a constant or a 

coefficient by only adding or subtracting it with another number (Figure 3) 

 

 

Figure 3. Student’s mistake in eliminating a constant in an inequality 

Based on Figure 3, we can see that the student first made the terms contain variables to 

be on the same side by changing the side, which is actually subtracting each side with 𝑎  and 

then adding each side with 9. So that he get −3 + 9 ≥ 3𝑎 − 𝑎 which is equal to 6 ≥ 2𝑎. Then, 

to get the value of 𝑎 he does the same step as before, that is by subtracting each side with 6 so 

that he get -4. 

Actually, at first, he was doing right by dividing each side with 2 to get the value of 𝑎. 

However, he changed his mind and was taught that he could get the value by subtracting each 

side with 6 as he did in the previous step. Then, he gets 𝑎 ≥ 2 − 6 and 𝑎 ≥ −4. However, he 

does not realize that the procedure had done should get 0 ≥ 2𝑎 − 6. Beside those type of 

mistake, there is only a student who could not solve the inequality. he stops at −2𝑎 ≥ −6

⇔ 2𝑎 ≥ ⋯ . Yet, we do not know for sure why he stops at that step.  

Error in determining the solution set 

Given question: (𝑥 + 2)(𝑥 − 1)(𝑥 − 3) > 0, find the solution.This question is focused on how 

students determining the range of solution. No difficult calculation is needed. They only need 

to find the value of 𝑥 so that (𝑥 + 2)(𝑥 − 1)(𝑥 − 3) = 0 and then find the possible range of 

solutions, and determining the right range of solution by doing a point test (substituting a value 

of 𝑥 in the particular area or range to the inequality and see whether that value satisfy the 

inequality or not).  

𝑎 − 3 ≥ 3𝑎 − 9 = −3 + 9 ≥ 3𝑎 − 𝑎 

                                    = 6 ≥ 2𝑎 = 2 ≥ 2 − 6 

                                                   = 𝑎 ≥ −4 
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They conclude that (𝑥 + 2) > 0, (𝑥 − 1) > 0, 𝑜𝑟 (𝑥 − 3) > 0. So that, 𝑥 > 2, 𝑥 >

1, 𝑜𝑟 𝑥 > 3. The strangest thing is that 𝑥 > 2, 𝑥 > 1, 𝑜𝑟 𝑥 > 3 do not have anything with the 

acquired solutions. They only used the number 2,1, and 3 to determine the interval of possible 

solution (Figure 4).  

 

Figure 4. Students mistake related to the procedure called finding the value of x which makes 

a zero 

This means that (𝑥 + 2) > 0, (𝑥 − 1) > 0, 𝑜𝑟 (𝑥 − 3) >0 do not have any meaning for 

them. 

Failed to understand the meaning of (𝑥 + 2)(𝑥 − 1)(𝑥 − 3) > 0, yet make it the same as 

the meaning of (𝑥 + 2)(𝑥 − 1)(𝑥 − 3) = 0 makes the students wrongly decided on the 

solutions as shown at Figure 5.  

 

Figure 5. Students mistaken (𝑥 + 2)(𝑥 − 1)(𝑥 − 3) > 0 as (𝑥 + 2)(𝑥 − 1)(𝑥 − 3) = 0. 

The Figure 5 tells that the students do not understand the meaning of  (𝑥 + 2)(𝑥 − 1)(𝑥 −

3) > 0 which is there are possible values of  (𝑥 + 2), (𝑥 − 1), (𝑥 − 3) so that  (𝑥 + 2)(𝑥 −

1)(𝑥 − 3) > 0, they are  (𝑥 + 2), (𝑥 − 1), (𝑥 − 3) should be positive and two of them are 

negative and the other one is positive. Yet, what the students do is make the meaning of  (𝑥 +

2)(𝑥 − 1)(𝑥 − 3) > 0 analogue with  (𝑥 + 2)(𝑥 − 1)(𝑥 − 3) = 0 which solution is required 

by finding the value of  (𝑥 + 2) = 0 𝑜𝑟 (𝑥 − 1) = 0 𝑜𝑟 (𝑥 − 3) = 0. Hence, they conclude the 

possible solutions are 𝑥 > −2, 𝑥 > 1, 𝑎𝑛𝑑 𝑥 > 3. So, they get the solution of the given 

inequality is 𝑥 > 3.  

(𝑥 + 2)(𝑥 − 1)(𝑥 − 3) > 0 

𝑥 + 2 > 0  𝑥 − 1 > 0 𝑥 − 3 > 0 

𝑥 > −2  𝑥 > 1  𝑥 > 3 

test point: 𝑥 = 3       (−3 + 2)(−3 − 1)(−3 − 3) > 0      𝑥 = 2       (2 + 2)(2 − 1)(2 − 3) > 0 

                      (TM) −24 > 0       (TM) −4 > 0 

      𝑥 = 0       (0 + 2)(0 − 1)(0 − 3) > 0       𝑥 = 4       (4 + 2)(4 − 1)(4 − 3) > 0 

                               6 > 0     18 > 0 

 

                          

      𝑥 = 0       (0 + 2)(0 − 1)(0 − 3) > 0 

                               6 > 0 

 

(𝑥 + 2)(𝑥 − 1)(𝑥 − 3) > 0 

𝑥 > −2  𝑥 > 1  𝑥 > 3 

     

 

              

        thus, the solution set is  𝑥 > 3 

HP = {𝑥|𝑥 > 3, 𝑥 ∈ 𝑅} 
 

 

                               

6 > 0 

 

+ + - - - 

-2 1 3 

HP = {𝑥| − 2 < 𝑥 <
1, 𝑎𝑛𝑑 𝑥 > 3, 𝑥 ∈ 𝑅} 

 
 

-2 1 3 
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As we analyzed further about students’ strategy in deciding the solution interval, it shows 

that students only check one possible interval and put sign “+”, ”-“ consecutively (Figure 6). 

We do not put in on the misconception since it leads to the correct answer. However, this 

strategy needs to be considered for the student's answers to question 3 since this strategy will 

not lead to the correct answer for the inequality given in question 3. 

 

 

Figure 6. Students always put sign “+”,”-“ consecutively 

We can see from the figure 6 above that even though the students already find the value 

of 𝑥 which makes zero and determining the possible interval of solutions correctly, however 

there is something strange when they check or test a value of 𝑥 in each interval. Acquired 

solution of the given inequality is right, yet the process of testing a value of 𝑥 in each interval 

can not justify their conclusion. First, the students only check the value of a 𝑥 in three intervals 

and exclude (−2,1) and suddenly conclude that the value of 𝑥 in that interval are solutions or 

satisfy the inequality. Second, for interval (1,3), they choose 𝑥 = 2 to be checked, and they get 

and conclude that (0)(1)(−1) < 0. Yet, if calculate it carefully, (0)(1)(−1) = 0 not less than 

0. This indicate that when doing the test, students do not really calculate the numbers but only 

pay attention to the positive and negative sign. So, for the case (0)(1)(−1), they see that 

(+)(+)(−) = (−), hence the value of 𝑥 in interval (1,3) do not satisfy the inequality.  

For instance, if he finds that when 𝑥 < −2, the inequality is unsatisfied or 

(𝑥 + 2)(𝑥 − 1)(𝑥 − 3) = (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) < 0 then for the next interval −2 < 𝑥 < 1, the value of 

𝑥 will satisfied the inequality or (𝑥 + 2)(𝑥 − 1)(𝑥 − 3) = (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) > 0. And the next 

interval must be negative, then positive. This can be drawn as, 

 

 

 

 

(𝑥 + 2)(𝑥 − 1)(𝑥 − 3) > 0 

𝑥 + 2 = 0  𝑥 − 1 = 0 𝑥 − 3 = 0 

𝑥 = −2  𝑥 = 1  𝑥 = 3 

 

      

 

                          

       

 

unsatisfy satisfy unsatisfy 

+ + - - - 

-2 1 3 

𝑥 = −3 
(−3 + 2) = −1 
(−3 − 1) = −4 
(−3 − 3) = −6 
 

HP = {𝑥| − 2 < 𝑥 <
1, 𝑎𝑛𝑑 𝑥 > 3, 𝑥 ∈ 𝑅} 𝑥 = 2 

(2 + 2) = 0 
(2 − 1) = 1 

(1 − 3) = −1 
 

𝑥 = 4 
(4 + 2) = 6 
(4 − 1) = 3 
(4 − 3) = 1 
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When we asked their reason during the interview, they answered that the teacher was teaching 

them. When we ask further whether they ever find the question in which the “-+” sign could 

not be put consecutively, they claim that the question has always satisfied the procedure. 

Error in determining the solution set of absolute value 

Given question below:  

Find the solutions of |𝑎 − 3| < |3𝑎 − 9| 

Common mistake that occurs (26 from 38) is they conclude that from (𝑎 − 3)(𝑎 − 3) > 0 the 

value of 𝑎 is greater than zero (Picture 7).  

 

 

Figure 7. Students wrong conclusion about (𝑎 − 3)(𝑎 − 3) > 0 

Figure 7 shows that students solve (𝑎 − 3)(𝑎 − 3) > 0 as they solve (𝑎 − 3)2 = 0 which 

means that (𝑎 − 3) = 0. So, they make an analogy that (𝑎 − 3)(𝑎 − 3) > 0 means (𝑎 − 3) >

0. Hence, they get 𝑎 > 3. In other word, they do not realize that (𝑎 − 3)(𝑎 − 3) > 0 means 

that (𝑎 − 3) could be greater than or less than zero.  

Second common mistake that happened is that even though they already determine the 

value of 𝑎 which makes 0, they only check one value of 𝑎 as a representative of the value of 𝑎 

in one possible range of solutions (Figure 8). They tend to ignore or do not check the other 

possible range or area of solutions (𝑎 < 3) and just conclude that if one side or range which 

|𝑎 − 3| <  |3𝑎 − 9| 

(𝑎 − 3)2 <  (3𝑎 − 9)2 

(𝑎2 − 6𝑎 + 9) <  (9𝑎2 − 54𝑎 + 81)  

𝑎2 − 9𝑎2 − 6𝑎 + 54𝑎 + 9 − 81 < 0 

−8𝑎2 + 48𝑎 − 72 < 0 

−𝑎2 + 6𝑎 − 9 < 0 

𝑎2 − 6𝑎 + 9 > 0 

(𝑎 − 3)(𝑎 − 3) > 0 

𝑎 > 3 

 

|𝑎 − 3| <  |3𝑎 − 9| 

can be solved by absolute nature |𝑎| <  |𝑏| =

 |𝑎|2 <  |𝑏|2  

(𝑎 − 3)2 <  (3𝑎 − 9)2 

(𝑎2 − 6𝑎 + 9) <  (9𝑎2 − 54𝑎 + 81)  

𝑎2 − 9𝑎2 − 6𝑎 + 54𝑎 + 9 − 81 < 0 

−8𝑎2 + 48𝑎 − 72 < 0 

 

𝑎2 − 6𝑎 + 9 > 0 

(𝑎 − 3)(𝑎 − 3) > 0 

(𝑎 − 3)2 > 0 

𝑎 > 3 

Thus, a value that fill up the inequality is 

{𝑥|𝑥 > 3, 𝑥{𝑅}} 

: 8 

divided by (-8) with 

changing the sign 
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satisfy the inequality then the other side will not satisfy the inequality. This kind of thinking 

also shown in the task 2.  

 

 

        (a)     (b) 

Figure 8. Students only check one possible range of solution 

Another mistake occurs while students are trying to solve inequality that involve absolute 

value is related to the properties of absolute value itself. For instance, instead of using the 

properties of absolute value in which |𝑎| > |𝑏| can be written as 𝑎2 > 𝑏2, students try to define 

|𝑎 − 3| < |3𝑎 − 9| as |𝑥| < 𝑠𝑐𝑎𝑙𝑎𝑟 𝑜𝑟 𝑠𝑐𝑎𝑙𝑎𝑟 < |𝑥| but they failed. They define |𝑎 − 3| <

|3𝑎 − 9| as: (i) −(𝑎 − 3) < 3𝑎 − 9 or (ii) (𝑎 − 3) < (3𝑎 − 9) (Figure 9). Since the definition 

is wrong, the answer or solution is also wrong.  

|𝑎 − 3| <  |3𝑎 − 9| 

(𝑎 − 3)2 <  (3𝑎 − 9)2 

(𝑎2 − 6𝑎 + 9) <  (9𝑎2 − 54𝑎 + 81)  

𝑎2 − 9𝑎2 − 6𝑎 + 54𝑎 + 9 − 81 < 0 

−8𝑎2 + 48𝑎 − 72 < 0 

−𝑎2 + 6𝑎 − 9 < 0 

𝑎2 − 6𝑎 + 9 > 0 

(𝑎 − 3)(𝑎 − 3) 

𝑎 − 3 = 0       𝑎 − 3 = 0 

        𝑎 = 3               𝑎 = 3 

 

 
 
 
HP = {𝑥|𝑥 > 3, 𝑥 ∈ 𝑅} 
 

 

 

 

|𝑎 − 3| <  |3𝑎 − 9| 

(𝑎 − 3)2 <  (3𝑎 − 9)2 

(𝑎 − 3)(𝑎 − 3) < (3𝑎 − 9)(3𝑎 − 9) 

𝑎2 − 3𝑎 − 3𝑎 + 9 < 9𝑎2 − 27𝑎 − 27𝑎 + 81 

            𝑎2 − 6𝑎 + 9 < 9𝑎2 − 27𝑎 − 27𝑎 + 81 

𝑎2 − 6𝑎 + 9 < 9𝑎2 − 27𝑎 − 27𝑎 + 81 

0 < 9𝑎2 − 54𝑎 + 81 − 𝑎2 + 26𝑎 − 9 

0 < 8𝑎2 − 48𝑎 + +72            ∶ 8 

0 < 𝑎2 − 6𝑎 + 9 

𝑎2 − 6𝑎 + 9 > 0 

(𝑎 − 3)(𝑎 − 3) 

𝑎1 = 3          𝑎1 = 3 

 

: 8 

 

3 
+ - 

3 
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Figure 9. Students wrong definition of |𝑎 − 3| < |3𝑎 − 9| 

The last mistake is not about the properties of absolute value, but more about the 

calculation itself. As it happened in the task 2, in task 3, there is also student who conclude that 

the value of 𝑥 which makes zero, in this case is 𝑥 = 3 as the solution of the inequality (Figure 

10).  

 

 

    (a)     (b) 

Figure 10. Student’s mistake in determining the solution of an inequality 

In fact, 𝑥 = 3 will result (𝑎 − 3)(𝑎 − 3) = 0. In other case, even though the student 

already find the value of 𝑥 which makes zero, without doing point test the student conclude that 

𝑎 > 3. Doing point test or re-check whether the acquired solution will satisfy the inequality or 

not indeed will really helpful.  

Beside mistaken the value of x which makes zero as the solution, there are also student 

who  conclude that 𝑎 − 3 >  √0 so 𝑎 − 3 > 0 and 𝑎 > 3 as shown in the Figure 11. 

|𝑎 − 3| <  |3𝑎 − 9| 

• −𝑎 + 3 <  3𝑎 − 9                (1) 

• 𝑎 − 3 <  3𝑎 − 9                  (2)  

• 𝑎 − 3 <  3𝑎 − 9                  (3) 

(1) −𝑎 − 3𝑎 + 3 + 9 <  0 

−4𝑎 + 12 < 0 

          −4𝑎 > −12 

                𝑎 > 3 

(2) −𝑎 − 3 < 3𝑎 − 9 

𝑎 − 3𝑎 + 6 < 0 

          −2𝑎 > −6 

                𝑎 > 3 

 

|𝑎 − 3| <  |3𝑎 − 9| 

squaring both side      thus, the solution is 𝑎 > 3 

𝑎2 − 6𝑎 + 9 <  9𝑎2 − 54𝑎 + 81               

−8𝑎2 + 48𝑎 − 72

8
<  0               

−𝑎2 + 6𝑎 − 9 <  0 

𝑎2 − 6𝑎 + 9 >  0 

(𝑎 − 3)(𝑎 − 3) 

𝑎 =  3 

 

8𝑎2 − 48𝑎 + 72          < 0 

 

𝑎2 − 6𝑎 + 9 < 0 

(𝑎 − 3)(𝑎 − 3) 

𝑎 = 3 V   𝑎 = 3   

thus, 𝑎 = 3 

 

: 8 
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Picture 11. Student’s thinking of 𝑎 − 3 >  √0 

Yet, 𝑥2 > 𝑎 𝑚𝑒𝑎𝑛𝑠 (𝑥)(𝑥) > 𝑎 so there are some possibilities of 𝑥 they are both 𝑥 are 

positive (𝑥 > 0) or both 𝑥 are negative (𝑥 < 0). if (𝑥 − 3)(𝑥 − 3) > 0 then (𝑥 − 3) > 0 or 

(𝑥 − 3) < 0. While what student do is only focus on (𝑥 − 3) > 0. 

Discussion 

For error in inequality rule at problem 1, the most common mistake by the students is that 

students tend not to change the direction of the inequality sign when the inequality is multiplied 

or divided by a negative number (Botty et al., 2015; El-khateeb, 2016; Taqiyuddin et al., 2017). 

More than 50% of the students who answer this question incorrectly do not change the direction 

of the inequality sign after multiplying or dividing −2𝑎 ≥ −6 with −1 (Figure 1). This is 

because they only remember the rule or because they do not careful with the operation involving 

negative number in an inequality. Another error is student only checks solution just substitute 

𝑎. If he check for other value of 𝑎, he will realize that his solution is incorrect (Figure 1). This 

may be because he doesn’t fully understand that 𝑎 ≥ 3 is 𝑎 = 3 or 𝑎 > 3. We can see that it is 

important to  explain the meaning of inequalities sign, what the meaning of solution in equalities 

(Almog & Ilany, 2012). Another error is student only changes the position of variable and the 

scalar by ignoring the direction of the inequality sign (Figure 2). Means that, he does not find 

the meaning of the inequality sign important or he does not understand what the inequality 

means (Almog & Ilany, 2012). 

For error in algebraic operation at problem 1, in Figure 3, student miscalculated. He get 

𝑎 ≥ 2 − 6 and 𝑎 ≥ −4, the procedure had done should get 0 ≥ 2𝑎 − 6. Errors that occur are 

usually students cannot perform the completion procedure correctly or students are wrong in 

doing calculations (Yuwono et al., 2021). A Student also does not know what to be done in the 

next step. 

For the problem 2, almost all students can answer it correctly. However, if we look further 

their answer especially in the strategy they used in detemining the solution set, it shows that all 

|𝑎 − 3| <  |3𝑎 − 9| 

|𝑎 − 3|2 <  |3𝑎 − 9|2 

 

(𝑎 − 3)(𝑎 − 3) < (3𝑎 − 9)(3𝑎 − 9) 

 

(𝑎2 − 3𝑎 − 3𝑎 + 9) < (9𝑎2 − 27𝑎 − 27𝑎 + 81) 

(𝑎2 − 9𝑎2 − 6𝑎 + 9) < (−54𝑎 + 81) 

−8𝑎2 − 6𝑎 + 54𝑎 + 9 − 81 < 0 

−8𝑎2 + 48𝑎 − 72 < 0 

𝑎2 − 6𝑎 + 9 < 0 

(𝑎 − 3)(𝑎 − 3) > 0 

(𝑎 − 3)2 > 0 

(𝑎 − 3) > √0 

𝑎 − 3 > 0          𝑎 > 0 + 3        𝑎 > 3 

 

 

 

 

 

 

 

: 8 
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the student who answer correctly (28 students) only check one range of possible solution and 

then put "+-" sign consecutively (Figure 6). As we interview them, they do at as the procedure 

taught by their teacher. Students do not really calculate the numbers but only pay attention to 

the positive and negative sign in number line (Figure 6). The way to solve that problem similar 

with research results by (Musafir & Susiswo, 2021) There is possibility that the students do not 

really check the value of 𝑥 in each interval, instead they only checks for one interval and 

conclude that the next or previous interval would have the opposite conclusion. Even though 

many students answered correctly, there were still errors. The most common error is they failed 

to understand the meaning of (𝑥 + 2)(𝑥 − 1)(𝑥 − 3) > 0 (Figure 4, Figure 5). The way to 

solve that problem similar with research results by Anggoro and Prabawanto (2019) and Pratiwi 

and Rosjanuardi (2020). They only know the procedure that they need to determine the possible 

interval for solutions by doing calculation but without knowing the reason why do the procedure 

should be determining the value of 𝑥 which makes zero (Jupri & Sispiyati, 2020).  

Error in determining the solution set also happen in absolute value. From 38 students, 

there is no one who answer this question correctly. Few students that understand and can solve 

of the absolute value (Curtis, 2016; Panaoura, 2014). Common mistake is they conclude that 

the value of 𝑎 is greater than zero (Figure 7). This happens because students just solved without 

check compatibility and use deeply understanding of the task (Almog & Ilany, 2012). Second 

common mistake,same with task 1, they only check one value of 𝑎 as a representative of the 

value in range of solutions (Figure 8). Another mistake is the definition from absolute value 

itself is wrong (Figure 9). The teacher should embed the concept of absolute value (Almog & 

Ilany, 2012). The last mistake same with task 2, in task 3, there are also students who conclude 

that the value of 𝑥 which makes zero is the solution of the inequality (Figure 10). Other mistake, 

students do is only focus on (𝑥 − 3) > 0 (Figure 11) similar with Figure 7. 

Conclusion 

Based on our conducted research, we found that most students did not fully understand the 

concept of inequalities. It was indicated by some mistakes that occurred in their work. The first 

factor that made some mistakes in solving inequalities occurred was because the students still 

bring out the characteristic of equalities while solving the inequalities problems. It makes them 

did not aware of inequalities signs. The suggestion for the next learning process was to 

introduce them to the number line for 𝑥 > 𝑎, 𝑥 < 𝑎, 𝑥 = 𝑎 𝑥 ≤ 𝑎, 𝑥 ≥ 𝑎 without any 

inequalities problems. It was to make sure them really aware about the meaning of the 

inequalities sign.   

The other factor which contributed to the students’ mistake was the “fast strategy” for 

linear or polynomial inequalities that the students applied for the absolute inequalities. This 

strategy might help them solve some inequalities problems and obscure the concept of 

inequalities itself. It could happen if the understanding of the concept were immature. To avoid 

this mistake, the teacher should not introduce the “fast strategy” before confirming the students’ 

comprehension of the inequalities.  
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In the following study, we can expand the other research to find the learning methods or 

strategies preventing students from avoiding mistakes. Considering that the undergraduate 

students involved in this study came from the science department during their senior high 

school, further research might also be applied in senior high school for the science department.  
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