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Abstract: This research delves into the study of partial differential equations (PDEs) 
and gravitational fields in spacetime. It focuses on solving PDEs using the Separation of 
Variables method and explores the relationship between the gravitational field tensor 
and the energy-momentum tensor, leading to the final equation for the gravitational 
field tensor. The research also investigates Einstein's theory of gravity and the energy-
momentum tensor integral, providing the general solution for the gravitational 
potential and its implications. Additionally, the mean integration of the gravitational 
wave tensor is analyzed, yielding an expression for the tensor strain of gravitational 
waves over an infinitely long period. The components of the gravitational wave tensor 
and their effect on gravitational sources are examined. Furthermore, the propagation of 
electromagnetic fields in spacetime is studied using the Retarded Green's Function. The 
primary objectives of this research are to understand and explore mathematical 
techniques for solving PDEs and analyzing gravitational fields and their interactions in 
spacetime. The integration of multiple theoretical concepts related to PDEs, 
gravitational fields, and electromagnetic fields enhances our understanding of 
fundamental physics principles. This contributes to the advancement of theoretical 
physics and opens avenues for potential practical applications, such as gravitational 
wave detection and electromagnetic field propagation in complex media. In conclusion, 
this research provides valuable insights into fundamental physics principles and fosters 

a deeper understanding of their interconnections and implications. 
 
Keywords: Partial Differential Equations (PDEs), Gravitational Fields, Spacetime, 
Green's Function, Electromagnetic Fields. 
 

  

 

Introduction  

This research aims to explore a deeper understanding 
of the separation of variables method in solving Partial 
Differential Equations (PDP) and apply the method to 

several relevant physics problems. This research also 
seeks to explore the relationship between the 
Gravitational Field Tensor and the Energy-Momentum 
Tensor in the context of Einstein's theory of gravity. 
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Background 

Variable splitting is a mathematical method used in 
solving various PDP problems. This method allows 
solving a multidimensional problem into a series of 
more tractable one-dimensional problems. In this 
research, we will focus on PDPs and how separation of 
variables is applied to obtain their general solution [1]. 

Gravity is one of the most fundamental phenomena in 
physics [2]–[5]. Einstein's theory of gravity states that 
gravity is the result of the curvature of space-time 
caused by the existence of mass and energy [6]–[9]. This 
research will also investigate the relationship between 
the Gravitational Field Tensor and the Energy-
Momentum Tensor, which is crucial in understanding 
the effects of gravity on the distribution of energy and 
momentum in spacetime [10], [11]. 

Research Benefits 
A deeper understanding of the separation of variables 
method in solving PDPs, which can be applied in 
various physics contexts [12], [13]. This research can 
contribute to our understanding of gravity and 
Einstein's theory of gravity. In the context of 
gravitational field theory, this research will help 
explain the relationship between the Gravitational Field 
Tensor and the Energy-Momentum Tensor, which is 
relevant for understanding the distribution of energy 
and momentum in gravity. 

Research Limitations 

This research will focus on the separation of variables 
in solving the PDP and the relationship between the 
Gravitational Field Tensor and the Energy-Momentum 
Tensor in Einstein's theory of gravity. This research will 
not cover further topics such as cosmological 
implications or more in-depth analysis of the special 
properties of gravitational waves. 

Novelty of Research 
Application of separation of variables method in 
solving PDP on some relevant physics problems. 
Research on the relationship between the Gravitational 
Field Tensor and the Energy-Momentum Tensor in the 
context of Einstein's theory of gravity. 

Research Implications 
The results of this study are expected to provide new 
insights in solving PDP and deepen the understanding 
of Einstein's theory of gravity. The implications of this 
research can also help understand more about the 
distribution of energy and momentum in space-time 
and its effect on gravitational phenomena. 

Research Gap in Research 

Although there are many previous studies that have 
explored the separation of variables method in solving 
PDP and Einstein's theory of gravity, there are some 
knowledge gaps that can be filled in this study, namely: 
Further explore the application of separation of 
variables to more complex physics problems. Conduct 

a more in-depth analysis of the implications of the 
relationship between the Gravitational Field Tensor 
and the Energy-Momentum Tensor in Einstein's theory 
of gravity. 

Method  

Solving Partial Differential Equations by the 
Separation of Variables Method 
This method is used to solve Partial Differential 
Equations (PDEs) using the separation of variables 
technique [14]. The process involves separating the 
variables in the PDE, calculating the partial derivatives 
of the function (u(x, t)) with respect to (t) and (x), and 
then substituting the results back into the PDE. By 
separating the variables, the PDE is transformed into 
two Ordinary Differential Equations (ODEs) that can be 
solved more easily [15]. The general solution typically 
involves several constants that depend on the initial 
and boundary conditions of the problem being solved. 

Relationship Between Gravitational Field Tensor and 
Energy-Momentum Tensor 
This topic covers the relationship between the 
Gravitational Field Tensor and the Energy-Momentum 
Tensor in the framework of Einstein's General Theory 
of Relativity [16]. The Einstein equations in the form of 
the linearized Gravitational Field Tensor are evaluated 
to obtain equations related to the energy-momentum 
tensor [17]. Mathematical steps are used to arrive at the 
final equation, which involves constants such as the 
speed of light (c) and the gravitational constant (G) [18]. 

Einstein's Theory of Gravity and the Energy-
Momentum Tensor Integral 

In this section, we explain the Einstein Gravity Tensor 
and the Energy-Momentum Tensor [19]. The Einstein 
equations in a vacuum are evaluated and described 
using integrals. The general solution to the Laplace 
equation in vacuum is derived and connected to the 
Energy-Momentum Tensor, which describes the 

distribution of energy and momentum in spacetime. 

Mean Integration of the Gravitational Wave Tensor 
This section describes the method of mean integration 
of the Gravitational Wave Tensor. The Gravitational 
Wave Tensor is represented in Einstein index notation, 
and mathematical formulas are given to calculate the 
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average integral over an infinitely long period of time 
(T). 

Components of Gravitational Wave Tensor and Their 
Effect on Gravitational Sources 
This topic relates to the components of the 
Gravitational Wave Tensor in Einstein index notation 

and their effects on gravitational sources. The 
component (hzz) of the Gravitational Wave Tensor is 
computed, and the equation describing the distribution 
of the gravitational wave field at a distance (r) from the 
source is derived. 

Propagation of Electromagnetic Fields in Spacetime 
Using the Retarded Green's Function 
This section discusses the propagation of 
electromagnetic fields in spacetime using the Retarded 
Green's Function. The general equation for the 
propagation of electromagnetic fields is presented, and 
the Retarded Green's Function is introduced as part of 
the solution to the electromagnetic wave equation [20]. 

Green's Function for the Integral in Field Theory 
This research is related to the Green's Function in the 
field theory. Mathematical steps are explained to 
replace the Retarded Green's Function in an equation 
using the Dirac delta function and integrate it to obtain 
the final equation [21]. 

Result and Discussion 

Results 

Solving Partial Differential Equations by the 
Separation of Variables Method 

First, we separate the variables in the PDP equation: 

( , ) ( ) ( )u x t X x T t=  (1) 

 
Then we calculate the partial derivatives of u(x,t) with 

respect to t and x: 

( )
u

X x
t


=


 

(2) 

2

2
( )

dT u
X x

dt t


=


 

(3) 

2

2
( )

d T u dX
T t

dt x dx


=


 

(4) 

2 2

2 2
( )

u d X
T t

x dx


=


 

(5) 

Next, substitute this result into the PDP equation: 

2 2

2

2 2
( ) ( ) ( , )

d T d X
X x c T t f x t

dt dx
− =  

(6) 

Since both sides of this equation must be the same for 
all values of x and t, we can separate the variables by 

dividing by ( ) and ( )X x T t : 

2 2

2 2
2 ( , )

( ) ( ) ( ) ( )

d T d X

f x tdt dx
c

T t X x X x T t
− =  

(7) 

Both sides of this equation must equal a constant 
(related to energy or frequency). We refer to this constant 

as  . So we have two separate ordinary differential 
equations: 

2

2
( )     0

d T
T t

dt
− =  

(8) 

2

2 2
( ) 0

d X
X x

dx c


+ =  

(9) 

The characteristics of this equation are 
2

0m − = , so 

the characteristic solution is m =  . So the general 

solution is: 

( ) cos( ) sin( )T t A t B t = +  (10) 

The characteristics of this equation are 
2

2
0m

c


+ = , so 

the characteristic solution is 
i

m
c

=  . So the general 

solution is: 

1 1
( ) cos sinX x C x D x

c c
 = +

   
   
   

 
(11) 

Returning to the original PDP equation, we can 
construct its general solution by combining  X(x) and 
T(t) 

1
( , ) ( cos( ) sin( ))( cos

1
              sin )

u x t A t B t C x
c

D x
c

  



= +

+

 
 
 

 
 
 

 

(12) 

The solution can then be determined by combining 
various values of   and other constants that will 
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depend on the initial and boundary conditions of the 
problem at hand. 

Relationship Between Gravitational Field Tensor and 
Energy-Momentum Tensor 
Consider Einstein's equations in the form of the 

Gravitational Field Tensor ( )h


 which is the 

linearization of ( )g


 to ( )


 : 

1

2

     8

G R g R

GT

  




= −

=

 

(13) 

 

Subtract this equation from (8 )G  to get: 

1 1

8 16

      

G R g R
G G

T

  



 
= −

=

 

(14) 

Get the Einstein Tensor ( )g


 in linear form: 

1 1
( )

8 16
G R h R

G G
   


 

= − +  
(15) 

Eliminate ( )R


 of the equation by using Einstein's 

equation in non-linear form: 

1 1

8 2
G R g R

G
  


= −

 
 
 

 
(16) 

Compare the two expressions ( )g


: 

1 1

8 2
R g R

G
 


= −

 
 
 

 

1 1
( )

8 16
R h R

G G
  


 

= − +  

(17) 

Get the final equation for ( )h


: 

4

16 G
h T

c
 


= −  

(18) 

Where c is the speed of light. In the unit universe, c = 1 
and G = 1, so we get the final equation: 

16h T
 

= −  (19) 

Einstein's Theory of Gravity and the Energy-
Momentum Tensor Integral 
The Einstein Gravity Tensor is defined as the 

fluctuation of the Minkowski metric ( )


 with the 

equation ( , ) ( , )h x t g x t
  

= − . Einstein's equation in 

vacuum is written as: 

1
0

2
R Rg

 
− =  

(20) 

The Laplace equation for the gravitational tensor 

( , )h x t


 in vacuum is 

0h

=  (21) 

The general solution to Laplace's equation 0h

=  in 

vacuum is  

00
( 4 ) a . nd ( 4 )h h

 
 = − =  (22) 

The Energy-Momentum Tensor ( )T


describes the 

distribution of energy and momentum in space-time. 
The Laplace equation for the Newtonian gravitational 

potential ( )  is  

0. =  (23) 

The Green's function for the Laplace operator in three 
dimensions is the function that satisfies 

4
( , ; , ) ( , ),G x t x t x x t t   = − −  (24) 

where 
4

( )  is the Dirac delta in space-time. The general 

solution to the Laplace equation ( 0) =  is  

3
( , ) ( , ) ( , ; , ) .x t T x t G x t x t d x dt


      =    (25) 

Mean Integration of the Gravitational Wave Tensor  

Gravitational waves can be represented by the tensor 

h


, where the Greek indices  and   range from 0 to 

3, representing spacetime components. For simplicity, 
let's assume we are in 3+1 dimensions, where index 0 
refers to the time component and indices 1, 2, and 3 
refer to the spatial components. The tensor strain of the 

gravitational wave, S


, is defined as the derivative of 

the tensor h


with respect to time: 
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dh
S

dt




=  

(26) 

To obtain the given equation, we want to calculate the 

average value of the tensor strain S


 over a period of 

time T. This is done by taking the integral of S


 with 

respect to time from 0 to T, and then dividing it by the 
duration T: 

avg

0

1
( )

T

S S t dt
T

 
=   

(27) 

However, since we are interested in the limit as T 
approaches infinity, we take the limit as T tends to 
infinity: 

0

1
lim ( )

T

T

S S t dt
T

 
→

=   
(28) 

By integrating h


 with respect to time, we obtain the 

final given equation: 

0

1
lim ( )

T

T

S h t dt
T

 
→

=   
(29) 

This is the mathematical expression of the tensor strain 

S


 of the gravitational wave as the average integral of 

the gravitational wave tensor h


 over an infinitely 

long period of time T. 

Components of Gravitational Wave Tensor and Their 
Effect on Gravitational Sources 
In the context of gravitational waves, we will calculate 
the component (hzz) of the gravitational wave tensor in 
Einstein index notation. In flat Minkowski spacetime, 
the gravitational wave equation is given by: 

0h

=  (30) 

where ( )



=   represents the d'Alembertian operator, 

and ( )

  denotes partial derivatives with respect to the 

coordinates ( )x


. For simplicity, we assume that 

gravitational waves propagate in only one direction, 

such as the z-axis. Hence, ( )h


 has non-zero 

components only for (hzz). Then, the gravitational wave 

field at a distance (r) from the source can be 
represented by the equation: 

2

4 2

2
( , ) ( / )

zz zz

G d
h t r t r c

c dt
= −I  

(31) 

where ( )
zz

I  represents the quadrupole moment: 

2 2 3( ) ( , ) 3zz t t z r d      = −  r rI  (32) 

The first formula we will examine is: 

0

1
16 lim

T

T

dt
T




→

= −   
(33) 

To calculate 
 , we will consider the sum of 

components (hzz) of the gravitational wave tensor in 
Einstein index notation. Considering the gravitational 
wave equation in flat Minkowski spacetime, we can 
write: 

0zzh =  (34) 

Using the previous expression for (hzz), we obtain an 
ordinary differential equation in time: 

2

4 2

2
( / ) 0zz

G d
t r c

c dt
− =I  

(35) 

After solving this differential equation, we can express 
the solution as: 

 
2

4 2

2
( , ) ( / ) ( / )zz zz

G d
h t r t r c f t r c

c dt
= − + −I  

(36) 

However, in calculating this sum, we can ignore the 

contribution of  ( )( )/f t r c−  as it only affects the time 

interval (T). Hence, the sum of (hzz) becomes: 

2

4 2

0

2
lim ( / )

T

zz
T

G d
t r c dt

c dt →
= −  I  

(37) 

Next, we apply the chain rule to compute the second 

integral of ( ( / ))zz t r c−I  and obtain: 

0

4

2
( ) |zz

G d d
u du

du duc −

 
=  

 
  I  

(38) 
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Since as ( )u → , ( ( ))zz uI  becomes zero, and as 

( )u →− , ( ( ))zz uI  also becomes zero, we can conclude: 

0

=  (39) 

The second formula we will examine is: 

0
16 limp

 


→
=−  (40) 

To calculate ( )
 for this second formula, we need 

to take the limit ( 0) → of the sum of components (hzz) 

in the same gravitational wave equation. Thus, we 
obtain: 

0

=  (41) 

Both formulas yield the same result, ( 0)

= , 

indicating that in the context of gravitational waves, 
there is no sum of the (hzz) component of the 
gravitational wave tensor. 

Propagation of Electromagnetic Fields in Spacetime 
Using the Retarded Green's Function 

The equation ( , ; , )RG x t x t  represents the solution to the 

Laplace equation in spacetime, describing the 
propagation of electromagnetic fields in spacetime. This 
function illustrates the system's response to a delta 
Dirac distribution at point x' at time t', measured at 
point x at time t. The equation implies that signals can 

only move forward in time t t and have a 

propagation profile dependent on the distance r and 
time t - t'.   

Since we have the ( )t t − factor in the equation, we 

know that this function is only equal to 1 when t \geq 
t'. Thus, we can simplify the equation to: 

2 2 2( ( ) )
( , ; , ) , for 

4
R

c t t r
G x t x t t t

r





− −
  =   

(42) 

We know that electromagnetic fields can propagate in 
both space and time, as given by the wave equation: 

2
2 2

2
0

E
c E

t


−  =


 

(43) 

To find the particular solution to the above wave 
equation, we can use the Green's function method. The 
particular solution is given by: 

( , ) ( , ; , ) ( , )RE x t G x t x t f x t dx dt     =    (44) 

where ( , )f x t   is the source of the electromagnetic field 

given as ( ) ( )x x t t  − − . By making this substitution, 

we can write: 

2

2 2

2

( , ; , )
( , ; , )

( ) ( )

R

R

G x t x t
c G x t x t

t

x x t t 

 
 = − 



 = − −

 

(45) 

First, we will find the spatial solution to the above 
equation by neglecting the time factor: 

2 2 ( , ; , )

( ) ( )

Rc G x t x t

x x t t 

 = 

 = − − −
 

(46) 

Since we have a delta Dirac distribution at one point, 

this equation can be simplified to: 

2 2 ( , ; , )

( )

Rc G x t x t

x x

 = 

= − −
 

(47) 

This equation is the Poisson equation in three 
dimensions for the function $G_R(x,t;x',t')$. The general 
solution to this equation is: 

( , ; , )

1
( , ; , )

4 | |

RG x t x t

F x t x t
x x

 =

 = +
−

 

(48) 

where ( , ; , )F x t x t   is a function that satisfies the Laplace 

equation and appropriate boundary conditions. Now, 

we will apply the time boundary condition t t  

present in the original equation. This condition requires 
that signals can only move forward in time. Thus, the 

contributions from ( , ; , )F x t x t   must be eliminated. 

Therefore, we can simplify the solution to: 

1
( , ; , ) , for 

4 | |
RG x t x t t t

x x
  = 

−
 

(49) 
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We need to consider the time factor in the solution. 
Electromagnetic fields move with the speed of light c. 
Hence, the time it takes for the electromagnetic field to 
propagate from point x' to x is |x - x'|/c. Thus, we can 
replace the time factor with a distance factor as follows: 

2 2 2( ( ) )
( , ; , ) ( ) , for 

4
R

c t t r
G x t x t t t t t

r





− −
   =  − 

 

(50) 

Fungsi Green's untuk Integral dalam Teori Medan 
Given the initial equation: 

( , ; , 0)

( , ; , 0)

R

i t

R

G x x t

G x t x t e dt






−

= =

= =
 

(51) 

Replace the Green's function GR(x,t;x',t = 0) with its 
expression: 

2 2 2

0

( , ; , 0)

( )
( ) ( )

4

R

i t i t

G x t x t

c t r
e e t dt

r

  




−

= =

−
= + 

 

(52) 

Substitute the value of (GR(x,t;x',t = 0)) into the initial 
equation: 

2 2 2

0

( , ; , 0)

( )
( ) ( )

4

R

i t i t i t

G x x t

c t r
e e t dt e dt

r

  







 
−

−

= =

−
= + 

 
 
 

 
 

(53) 

Simplify the equation by combining the exponential 

term 
i t

e


 inside the integral: 

2 2 2

0

( , ; , 0)

( )
( ) ( )

4

R

i t i t

G x x t

c t r
e e t dt dt

r

 







 
−

−

= =

−
= + 

 
 
 

 
 

(54) 

Replace the integral inside the bracket with the Dirac 
delta function: 

2 2 2

( , ; , 0)

( ) ( )

R

i t i t

G x x t

e e c t r dt
 






−

−

= =

= + −
 

(55) 

Change the variable inside the delta function using 

ret

r
t t

c
= − : 

2 2

ret

( , ; , 0)

( ) ( ( ) )

R

i t i t

G x x t

r
e e c t r dt

c

 






−

−

= =

= + + −
 

(56) 

Simplify the equation with the delta function: 

2

2 2 2

ret ret 2

( , ; , 0)

( ) ( ( 2 ) )

R

i t i t

G x x t

r r
e e c t t r dt

c c

 






−

−

= =

= + + + −
 

(57) 

Change the expression inside the delta function to 
2

2

ret 2
( )

r
t

c
 − : 

2

2

ret 2

( , ; , 0)

( ) ( ( ))

R

i t i t

G x x t

r
e e c t dt

c

 






−

−

= =

= + −
 

(58) 

Replace ret( )t  with ( / )r c : 

2
2

2

( , ; , 0)

( ) ( (( ) ))

R

i t i t

G x x t

r r
e e c dt

c c

 






−

−

= =

= + −
 

(59) 

Simplify the equation with the delta function: 

( , ; , 0)

( ) (0)

R

i t i t

G x x t

e e dt 






−

−

= =

= +
 

(60) 

Integrate the delta function with time bounds: 

ret ret

( , ; , 0)

( )

2 ( )

|
R

i t i t

i t i t

G x x t

e e

e e

 

 





− 

−

−

= =

= +

= +

 

(61) 

We can further simplify the equation to the given form: 

ret

ret 2

ret

( , ; , 0)

1
( )

4 2

R

i t

G x x t

e
t

r c t







= =

= 
 

(62) 

 

Conclusion 

The research provides a systematic approach to solve 
partial differential equations (PDEs) using the 
separation of variables method. The method involves 
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separating the variables and solving two separate 
ordinary differential equations, one for each variable. 
The general solution is then constructed by combining 
the solutions of these equations. The approach is 
suitable for problems with certain initial and boundary 
conditions. The research explores the relationship 
between the gravitational field tensor and the energy-
momentum tensor based on Einstein's equations. By 
linearizing the equations and performing mathematical 
manipulations, the researchers derive an equation that 
describes the gravitational field tensor in terms of the 
energy-momentum tensor and the speed of light. This 
equation represents a fundamental relationship 
between gravity and energy-momentum distributions. 
The research delves into the Einstein gravity tensor and 

its relationship with the Minkowski metric. It presents 
a Laplace equation for the gravitational tensor in 
vacuum and provides its general solution. 
Additionally, the research introduces the concept of the 
Energy-Momentum Tensor, which describes the 
distribution of energy and momentum in spacetime. 
The research focuses on gravitational waves 
represented by the gravitational wave tensor. It 

presents the mathematical expression for the tensor 
strain of the gravitational wave and calculates its 
average value over an infinitely long period of time. 
The result gives insight into the behavior of 
gravitational waves over time. The research analyzes 
the components of the gravitational wave tensor in the 
context of gravitational waves. It demonstrates that 
certain components have no sum and clarifies their 
effects on gravitational sources. This analysis provides 
a deeper understanding of the behavior of gravitational 
waves and their interactions with sources. The research 
explores the propagation of electromagnetic fields in 
spacetime using the retarded Green's function. It 
derives a specific solution to the wave equation for 
electromagnetic fields, taking into account the Green's 
function method. This provides a useful tool for 
studying the behavior of electromagnetic fields over 
spacetime. The research investigates the Green's 
function for an integral in field theory. It derives the 
expression for the Green's function and applies it to the 
initial equation, leading to a simplified form that 
involves the Dirac delta function. This analysis 
provides insights into the integral solutions in the field 
theory. 
The separation of variables method presented in the 
research can be practically applied to solve various 
types of partial differential equations encountered in 
physics and engineering. Researchers and practitioners 
can use this method to solve specific PDE problems 
with well-defined initial and boundary conditions. The 
derived equation linking the gravitational field tensor 
and the energy-momentum tensor has theoretical 

implications for understanding the connection between 
gravity and the distribution of energy and momentum 
in spacetime. This equation can be utilized in 
theoretical studies and investigations related to the 
behavior of gravity. Understanding the behavior of 
gravitational wave components and their effects on 
gravitational sources can be crucial in the study of 
astrophysical phenomena and gravitational wave 
detection. Researchers and scientists can employ this 
knowledge to better interpret gravitational wave 
signals and gain insights into the properties of the 
sources emitting these waves. The use of the retarded 
Green's function to study the propagation of 
electromagnetic fields in spacetime provides practical 
tools for analyzing electromagnetic wave behavior and 

interactions. This method can be applied to various 
scenarios involving electromagnetic fields to gain a 
better understanding of their propagation patterns. The 
Green's function method introduced in the context of 
field theory can be applied to various physical 
phenomena involving fields. Researchers and 
practitioners can use this approach to study the 
solutions to integral equations and understand the 

influence of sources on field distributions. The research 
highlights several mathematical techniques, such as 
separation of variables, linearization, and Green's 
function, which are valuable in solving various 
physical problems. These techniques can be utilized in 
other research areas and applied to different types of 
equations to derive meaningful solutions. 
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