PERBANDINGAN GEOGRAPHICALLY WEIGHTED NEGATIVE BINOMIAL REGRESSION DAN GEOGRAPHICALLY WEIGHTED GENERALIZED POISSON REGRESSION UNTUK MENGATASI OVERDISPERSI PADA KASUS PNEUMONIA PADA BALITA DI KABUPATEN LOMBOK TIMUR
Keywords:
Pneumonia, GWGPR, GWNBR, OverdispersiAbstract
Based on data released by UNICEF, there were 725,557 cases of pneumonia in toddlers that occurred worldwide in 2021. Pneumonia is an infectious disease that contributes to the largest number of deaths among toddlers in the world in 2021. East Lombok Regency is the region with the highest number of pneumonia cases in toddlers in NTB Province with 4,140 cases throughout 2022. Factors that influence the high rate of pneumonia in toddlers in East Lombok Regency include Food Management Facilities , Public Facilities , clean drinking water facilities, Low Birth Weight Babies (LBW) and Exclusive Breastfeeding. This study uses the Geographically Weighted generalized Poisson Regression (GWGPR) and Geographically Weighted Negative Binomial Regression (GWNBR) methods to overcome Overdispersion and spatial heterogeneity in Pneumonia data in East Lombok in 2022. The results of the analysis show that the GWNBR method is a better method than the GWGPR method in modeling Pneumonia cases in toddlers in East Lombok, this is indicated by the AIC value in the GWNBR model being smaller than the GWGPR model. Based on the results of the GWNBR model estimation, it was found that there were 3 significant variables throughout East Lombok, namely clean drinking water facilities, low birth weight babies and exclusive breastfeeding.
References
Adlan, I. M. H., & Karyana, Y. (2021). Pemodelan Jumlah Kasus Demam Berdarah Dengue (DBD) di Provinsi Jawa Barat Tahun 2018 Menggunakan Geographically Weighted Negative Binomial Regression. Prosiding Statistika, 7(1), 121-128.
Adryanta, M., & Purhadi, P. (2020). Analisis Metode Geographically Weighted Generalized Poisson Regression untuk Pemodelan Faktor yang Mempengaruhi Jumlah Kematian Anak di Provinsi Jawa Timur. Jurnal Sains dan Seni ITS, 8(2), D252-D259.
Amini, S., & Valiollahzadeh, M. (2019). A Comparison of Generalized Weighted Negative Binomial Regression and Other Count Data Models. Mathematics and Statistics, 7(2), 54–66. https://doi.org/10.13189/ms.2019.070201
Dinas Kesehatan Kabupaten Lombok Timur. (2022). Profil Kesehatan Indonesia Tahun 2022. (Selong: Kementrian Kesehatan Kabupaten Lombok timur).
Dinas Kesehatan Provinsi Nusa Tenggara Barat. (2022). Profil Kesehatan Indonesia tahun 2022. Dinas Kesehatan Provinsi Nusa Tenggara Barat. https://dinkes.ntbprov.go.id/profil-kesehatan/
Harahap, R. J. (2018). Penerapan data count dengan menggunakan regresi hurdle Poisson (Tesis, Universitas Pendidikan Indonesia). Repository Universitas Pendidikan Indonesia. https://repository.upi.edu
Kementerian Kesehatan Republik Indonesia. (2022). Profil Kesehatan Indonesia tahun 2022. Kementerian Kesehatan Republik Indonesia. https://kemkes.go.id/app_asset/file_content_download/1702958336658115008345c5.53299420.pdf
Salim, M. I. (2023). Geographically Weighted Negative Binomial Regression Pada Data Jumlah Penduduk Miskin Di Sulawesi Selatan. Jurnal MSA (Matematika dan Statistika serta Aplikasinya), 11(1), 26-32.
UNICEF. (2021). Pneumonia Jadi Penyebab Terbesar Kematian Balita di Dunia 2021. UNICEF. https://databoks.katadata.co.id/layanan-konsumen-kesehatan/statistik/69a6da4dd6fd365/pneumonia-jadi-penyebab-terbesar-kematian-balita-di-dunia-2021
Wahyuni, L. (2021). Analisis Faktor-Faktor Risiko Yang Mempengaruhi Jumlah Kasus Tuberkulosis (TBC) di Provinsi Jawa Barat Tahun 2018 Menggunakan Pendekatan Geographically Weighted Negative Binomial Regression (GWNBR). Program Studi Matematika Uin Syarif Hidayatullah Jakarta.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Eksbar
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.