Selang Waktu Tunggu Bencana Erupsi Gunung Api di Indonesia (Studi Kasus Metode Bootstrap Distribusi Eksponensial Satu Parameter Sensor Tipe Lengkap)

Authors

  • Rian Putra Program Studi Statistika Universitas Hamzanwadi
  • Gaibul Kahfi Program Studi Statistika Universitas Hamzanwadi
  • Sabrina Arfia Imtihani Program Studi Statistika Universitas Hamzanwadi
  • Umam Hidayaturrohman Program Studi Statistika Universitas Hamzanwadi

Keywords:

bootstrap, sensor, distribusi eksponensial, bencana, interval konfidensi.

Abstract

This study aims to develop a bootstrap approach for constructing confidence intervals for the exponential distribution parameter using waiting time data from volcanic eruptions in 2023. Employing the nonparametric bootstrap method, an empirical distribution of parameter estimates was generated through resampling censored complete data. The results demonstrate that the bootstrap method provides narrower confidence intervals at the 95% confidence level compared to traditional methods, although it produces wider intervals at the 99% level. This method is flexible and accurate, making it suitable for constrained data, such as natural disaster data. The findings support decision-making in disaster risk mitigation.

References

Anderson, J. (2019). Volcanic eruptions: Causes and mechanisms. London: Earth Science Publishing.

Brown, P. (2023). The Pacific Ring of Fire: A geological perspective. New York: Global Geosciences Press.

Casella, G., & Berger, R. L. (2002). Statistical inference (2nd ed.). Pacific Grove, CA: Duxbury.

Chatfield, C. (2003). The analysis of time series: An introduction (6th ed.). Boca Raton, FL: Chapman & Hall/CRC.

Davidson, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge, UK: Cambridge University Press.

Davis, K. (2020). Plate tectonics and volcanic activity. Cambridge: Cambridge University Press.

DiCiccio, T. J., & Efron, B. (1996). Bootstrap confidence intervals. Statistical Science, 11(3), 189–212.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1), 1-26.

Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York: Chapman & Hall.

Hosseini, M., & Ahmadi, M. (2014). Comparative analysis of bootstrap methods for censored data. Journal of Statistical Computation and Simulation, 84(5), 1057–1073. https://doi.org/10.1080/00949655.2013.764631

Johnson, L. (2021). Magma dynamics and volcanic eruptions. Boston: Geological Studies Press.

Lawless, J. F. (2003). Statistical models and methods for lifetime data (2nd ed.). Hoboken, NJ: Wiley.

Moore, D. S., & McCabe, G. P. (2006). Introduction to the practice of statistics (5th ed.). New York: W.H. Freeman.

Park, C., & Kim, S. (2009). Bootstrap methods for exponential distribution parameters with complete censoring. Journal of Applied Statistics, 36(7), 747-758. https://doi.org/10.1080/02664760902842392

Shalizi, C. R. (2013). Advanced data analysis from an elementary point of view. Cambridge, UK: Cambridge University Press.

Smith, R. (2022). Natural disasters and their impacts on human life. New York: Random House.

Taylor, M. (2020). Volcanic hazards and their mitigation. San Francisco: Volcano Science Institute.

Downloads

Published

2025-01-06