ANALISIS KETAHANAN HIDUP PASIEN DIABETES MELITUS DENGAN METODE REGRESI COX PROPORTIONAL HAZARD PADA DATA SATU PARAMETER TERSENSOR TIPE II

Authors

  • Umam Hidayaturrohman Program Studi Statistika Universitas Hamzanwadi
  • Liska Lisnawati Liska lisnawati Program Studi Statistika Universitas Hamzanwadi
  • Abdi Teguh Wijaya Program Studi Statistika Universitas Hamzanwadi
  • Zulfa Bariyyah Program Studi Statistika Universitas Hamzanwadi
  • Bq. Yulia Setia Silviani Program Studi Statistika Universitas Hamzanwadi
  • Alissa Chintyana Program Studi Statistika Universitas Hamzanwadi

DOI:

https://doi.org/10.29408/eksbar.v2i1.29126

Keywords:

Survival Analysis, Diabetes Mellitus, Type-II Diabetes Mellitus, Cox Proportional Hazard Regression

Abstract

Diabetes mellitus (DM) is a chronic metabolic disease or disorder with various causes characterized by high blood sugar levels accompanied by impaired metabolism of carbohydrates, fats, and proteins as a result of impaired insulin function. However, in diabetics, the pancreas is unable to produce insulin as the body needs. Without insulin, the body's cells cannot absorb and process glucose into energy. Although this disease is not contagious, the impact it has on health is crucial. Seeing this, researchers want to see the magnitude of the combination of factors that affect the survival of people with diabetes mellitus using the cox proportional hazard regression method. To find out this, a case study of diabetes mellitus data at PKU Muhammadiyah Hospital Yogyakarta was used. The data analysis stage uses exponentially distributed data of one type II sensor parameter and uses the cox regresion proportional hazard method. The results of the application of the two methods to the survival data of patients with type2 diabetes mellitus inpatient survival time at a significance level of 5% that the independent variables used, together affect patients affected by diabetes mellitus until death as many as 6 cases or 18.2% of 33 data cases. With the chance of hospitalization time in the next 9 days is 0.78267 and in the next 15 days is 0.66470.

References

Alfisyahrina (2022) Model Cox Proportional Hazard dengan Metode Backward untuk Analisis Ketahanan Hidup Pasien Penderita Stroke (Studi Kasus Di Rumah Sakit Siti Khodijah Sidoarjo)," Jurnal Statistika, vol. 10, no. 1, pp. 8-11.

Cahyani, W. et,al (2024). Analisis Survival Menggunakan Regresi Weibull Pada Laju Kesembuhan Pasien Jantung Koroner. Sains dan Matematika, 9(2), 39-45.

Dewi, A. Y. et.al (2020). Analisis Survival Model Regresi Cox Dengan Metode Mle Untuk Penderita Diabetes Mellitus. Unnes Journal Of Mathematics, 9(1), 31-40.

Dukalang (2019). Analisis Regresi COX Proportional Hazard pada Pemodelan Waktu Tunggu Mendapatkan Pekerjaan, Jambura Jurnal of Mathematics, vol. 1, no. 1, p. 36.

Faisal, A.R (2020). Analisis Survival dengan Pemodelan Regresi Cox Proportional Hazard Menggunakan Pendekatan Bayesian (Studi Kasus: Pasien Rawat Inap Penderita Demam Tifoid di RSUD Haji Makassar, VARIANSI: Journal of Statistics and Its Application on Teaching and Research , vol. 2, no. 2, pp. 62-69.

Maulida, E. A. (2019). Analisis Ketahanan Hidup Penderita Kanker Payudara menggunakan Regresi Cox Proportional Hazard dan Metode Kaplan Meier. Tugas Akhir, Surabaya.

Purnami, S. W., & Pertiwi, I. N. (2020). Regresi Cox Proportional Hazard Untuk Analisis Survival Pasien Kanker Otak di C-Tech Labs Edwar Technology Tangerang. Inferensi, 3(2), 65.

Ramadhani, I. K. (2020). Analisis Survival Pada Pasien Diabetes Melitus Tipe-2 Menggunakan Metode Kaplan Meier Dan Uji Log Rank. 65.

Sanusi, W et.al. (2018). Model Regresi Cox dan Aplikasinya dalam Menganalisis Ketahanan Hidup Pasien Penderita Diabetes Mellitus di Rumah Sakit Bhayangkara Makassar. Journal of Mathematics, Computations, and Statistics.

Downloads

Published

2025-06-20