Model Hibrida K-Nearest Neighbors Berbasis Genethic Algorithm untuk Prediksi Penyakit Ginjal Kronis

Authors

  • Sinta Rukiastiandari Universitas Bina Sarana Informatika
  • Luthfia Rohimah Universitas Bina Sarana Informatika
  • Aprillia Aprillia Universitas Bina Sarana Informatika
  • Chodidjah Chodidjah Universitas Bina Sarana Informatika
  • Fara Mutia Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.29408/jit.v8i1.27918

Keywords:

Chronic Kidney Disease, Genethic Algorithm, Hybrid Model, K-Nearest Neighbours

Abstract

Chronic Kidney Disease, which is often abbreviated as PGK, is a serious disease that is of major concern to society and the medical world. This disease can cause various serious complications if not treated properly and early. Therefore, accurate prediction of CKD is very important to support early intervention that can slow disease progression, prevent further complications, and increase the patient's chances of recovery. This research aims to increase the accuracy of PGK predictions by developing a hybrid model that combines the K-Nearest Neighbors (KNN) algorithm with optimization using the Genetic Algorithm (GA). In this approach, the KNN algorithm is used to build a prediction model, while GA acts as an optimization tool that improves model performance. The effectiveness of the optimized model is evaluated using key metrics such as accuracy, precision, recall, and area under the curve (AUC). The results show a significant increase in performance, with accuracy increasing by 17.75%, precision increasing by 23.84%, and recall increasing by 5.34%. This research makes an important contribution to the development of data mining technology for clinical applications and opens up opportunities for further improvements in the future in increasing the prediction accuracy of chronic diseases such as CKD

References

E. H. A. Rady and A. S. Anwar, “Prediction of kidney disease stages using data mining algorithms,” Informatics Med. Unlocked, vol. 15, no. December 2019, p. 100178, 2019, doi: 10.1016/j.imu.2019.100178.

Arif-Ul-Islam and S. H. Ripon, “Rule Induction and Prediction of Chronic Kidney Disease Using Boosting Classifiers, Ant-Miner and J48 Decision Tree,” 2nd Int. Conf. Electr. Comput. Commun. Eng. ECCE 2019, pp. 1–6, 2019, doi: 10.1109/ECACE.2019.8679388.

S. B. Akben, “Early Stage Chronic Kidney Disease Diagnosis by Applying Data Mining Methods to Urinalysis, Blood Analysis and Disease History,” Irbm, vol. 39, no. 5, pp. 353–358, 2019, doi: 10.1016/j.irbm.2018.09.004.

S. Revathy, B. Bharathi, P. Jeyanthi, and M. Ramesh, “Chronic kidney disease prediction using machine learning models,” Int. J. Eng. Adv. Technol., vol. 9, no. 1, pp. 6364–6367, 2019, doi: 10.35940/ijeat.A2213.109119.

R. A, S. P. S, K. V Rangarao, and A. Saranya, “Efficient datamining model for prediction of chronic kidney disease using wrapper methods,” Int. J. Informatics Commun. Technol., vol. 8, no. 2, p. 63, 2019, doi: 10.11591/ijict.v8i2.pp63-70.

M. Hosseinzadeh et al., “A diagnostic prediction model for chronic kidney disease in internet of things platform,” Multimed. Tools Appl., vol. 80, no. 11, pp. 16933–16950, 2021, doi: 10.1007/s11042-020-09049-4.

E. Purwaningsih, “Improving the Performance of Support Vector Machine With Forward Selection for Prediction of Chronic Kidney Disease,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 8, no. 1, pp. 18–24, 2022, doi: 10.33480/jitk.v8i1.3327.

S. H. Hassan and A. M. Abdulazeez, “A Review on Utilizing Data Mining Techniques for Chronic Kidney Disease Detection,” Indones. J. Comput. Sci., vol. 13, no. 3, pp. 4049–4066, 2024, doi: https://doi.org/10.33022/ijcs.v13i3.4062.

Fathurrahman, Yupi Kuspandi Putra, and M. A. J. Hidayat, “Penerapan Algoritma Naïve Bayes Untuk Analisis Pengaruh Faktor Pendidikan Terhadap Peningkatan Kesehatan Masyarakat,” Infotek J. Inform. dan Teknol., vol. 7, no. 2, 2024.

B. A. C. Permana, Muhammad Sadali, and R. Ahmad, “Penerapan Model Decision Tree Menggunakan Python Untuk Prediksi Faktor Dominan Penyebab Penyakit Stroke,” Infotek J. Inform. dan Teknol., vol. 7, no. 1, 2024.

A. Alaiad, H. Najadat, B. Mohsen, and K. Balhaf, “Classification and Association Rule Mining Technique for Predicting Chronic Kidney Disease,” J. Inf. Knowl. Manag., vol. 19, no. 1, 2020, doi: 10.1142/S0219649220400158.

J. Qin, L. Chen, Y. Liu, C. Liu, C. Feng, and B. Chen, “A machine learning methodology for diagnosing chronic kidney disease,” IEEE Access, vol. 8, pp. 20991–21002, 2020, doi: 10.1109/ACCESS.2019.2963053.

E. M. Senan et al., “DiagnosisofChronicKidneyDiseaseUsingEffective Classification Algorithms and Recursive Feature Elimination Techniques,” J. Healthc. Eng., vol. 2021, 2021, doi: 10.1155/2021/1004767.

M. Mamun, A. Farjana, M. Al Mamun, M. S. Ahammed, and M. M. Rahman, “Heart failure survival prediction using machine learning algorithm: am I safe from heart failure?,” 2022, doi: 10.1109/AIIoT54504.2022.9817303.

P. Chittora et al., “Prediction of Chronic Kidney Disease - A Machine Learning Perspective,” IEEE Access, vol. 9, pp. 17312–17334, 2021, doi: 10.1109/ACCESS.2021.3053763.

R. A. M. Elghalid, A. Alwirshiffani, A. A. I. Mohamed, F. H. A. Aldeeb, and A. Andiasha, “Comparison of Some Machine Learning Algorithms for Predicting Heart Failure,” 2022, doi: 10.1109/ICEMIS56295.2022.9914325.

I. Saha, M. K. Gourisaria, and G. M. Harshvardhan, “Classification System for Prediction of Chronic Kidney Disease Using Data Mining Techniques,” Lect. Notes Networks Syst., vol. 318, no. May 2017, pp. 429–443, 2022, doi: 10.1007/978-981-16-5689-7_38.

H. Nurdin, Suhardjono, A. Wuryanto, D. Yuliandari, and H. Sugiarto, “Naive Bayes and Particle Swarm Optimization in Early Detection Of Chronic Kidney Disease,” J. Tek. Inform., vol. 5, no. 3, pp. 703–708, 2024, doi: https://doi.org/10.52436/1.jutif.2024.5.3.1750.

W. Widiati, N. Iriadi, I. Ariyati, I. Nawawi, and Sugiono, “Pendekatan Hibrida Decision Tree-Particle Swarm Optimization untuk Deteksi Dini Penyakit Ginjal Kronis,” JASIEK (Jurnal Apl. Sains, Informasi, Elektron. dan Komputer), vol. 6, no. 1, pp. 11–21, 2024, doi: 10.26905/jasiek.v6i1.13006.

G. Wijaya, “Improvement of Kernel SVM to Enhance Accuracy in Chronic Kidney Disease,” vol. 9, no. 1, pp. 136–144, 2024, doi: https://doi.org/10.33395/sinkron.v9i1.13112 e-ISSN.

S. Widodo, H. Brawijaya, and S. Samudi, “Building a Predictive Model for Chronic Kidney Disease: Integrating KNN and PSO,” Paradig. - J. Komput. dan Inform., vol. 26, no. 1, pp. 58–64, 2024, doi: 10.31294/p.v26i1.3282.

I. M. D. Priyatama and Ridwansyah, “Klasifikasi Anak Berkebutuhan Khusus Tunagrahita Menggunakan Metode Algoritma C4.5,” Paradigma, vol. 24, no. 1, pp. 90–95, 2022, doi: https://doi.org/10.31294/paradigma.v24i1.1087 Paradigma,.

V. Riyanto, A. Hamid, and Ridwansyah, “Prediction of Student Graduation Time Using the Best Algorithm,” Indones. J. Artif. Intell. Data Min., vol. 2, no. 2, pp. 1–9, 2019, doi: http://dx.doi.org/10.24014/ijaidm.v2i1.6424

Ridwansyah and E. Purwaningsih, “Mengukur Tingkat Error Ketahanan Beton dengan Metode Klasifikasi Neural Network dan Support Vector Machine,” J. Tek. Inform., vol. 5, no. 1, 2019, doi: https://doi.org/10.51998/jti.v5i1.295.

Ridwansyah and E. Purwaningsih, “Particle Swarm Optimization Untuk Meningkatkan Akurasi Prediksi Pemasaran Bank,” J. PILAR Nusa Mandiri, vol. 14, no. 1, pp. 83–88, 2018.

R. Ridwansyah, G. Wijaya, and J. J. Purnama, “Hybrid Optimization Method Based on Genetic Algorithm for Graduates Students,” J. Pilar Nusa Mandiri, vol. 16, no. 1, pp. 53–58, 2020, doi: 10.33480/pilar.v16i1.1180

Downloads

Published

20-01-2025

How to Cite

Rukiastiandari, S., Rohimah, L., Aprillia, A., Chodidjah, C., & Mutia, F. (2025). Model Hibrida K-Nearest Neighbors Berbasis Genethic Algorithm untuk Prediksi Penyakit Ginjal Kronis. Infotek: Jurnal Informatika Dan Teknologi, 8(1), 44–55. https://doi.org/10.29408/jit.v8i1.27918

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.