Pengembangan Aplikasi Point of Sales untuk Prediksi Penjualan Harian Usaha Minuman Menggunakan Algoritma Random Forest Regression

Authors

  • Ricky Verdiyanto Universitas Duta Bangsa
  • Dwi Hartanti Universitas Duta Bangsa Surakarta
  • Eko Purwanto Universitas Duta Bangsa Surakarta

DOI:

https://doi.org/10.29408/jit.v8i1.28386

Keywords:

Point of Sales, Random Forest Regression, Sales Prediction System

Abstract

The jumbo iced tea business is growing rapidly, but one partner in Solo faced challenges in manual transaction recording and sub-optimal stock management due to sales fluctuations. This problem has an impact on operational efficiency and customer satisfaction. This research aims to design and build a point of sales application with sales prediction features using random forest regression algorithms that are able to cope with non-linear data and have high accuracy. The method used is waterfall, which includes the stages of identification and planning, analysis, system design, implementation, and maintenance. The dataset for prediction is taken from historical daily sales data, with variables used including day of the week, weekend status, previous day's sales, and average sales of the previous 7 days. The test results show that the random forest regression model with a total dataset of 30 data has a good level of accuracy, with an average absolute error percentage of 2.85%. The application system developed is able to improve the operational efficiency of the jumbo iced tea business, support better decision making, increase profitability, and improve customer satisfaction through more structured stock and transaction management

References

Lisnawati, “Tantangan UMKM Di Tahun 2024,” https://berkas.dpr.go.id/pusaka/files/isu_sepekan/Isu%20Sepekan---V-PUSLIT-November-2023-246.pdf.

K. Siagian, “Point of Sales Sebagai Pintu Gerbang Digitalisasi UMKM,” https://dailysocial.id/post/point-of-sales-sebagai-pintu-gerbang-digitalisasi-umkm.

R. Y. Pratama, “Perancangan Aplikasi Point Of Sales (POS) Berbasis Android (Studi Kasus: Warkop Vape Salatiga),” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 8, no. 4, pp. 1923–1938, Dec. 2021, doi: 10.35957/jatisi.v8i4.1218.

P. Chandra, “rancang bangun sistem point of sales dan inventori pada cafe youth creatino,” 2021. Accessed: Dec. 09, 2024. [Online]. Available: https://repository.usni.ac.id/repository/999e8f9daccc911a5864524f45c87b15.pdf

M. R. Irfan, “Sistem Pendukung Keputusan Seleksi Karyawan Dengan Menggunakan Algoritma Random Forest ,” https://eprints.udb.ac.id/id/eprint/2125/.

S. E. Muhammad, Sarwido, and K. Z. Akhmad, “Penerapan Algoritma Random Forest Untuk Prediksi Penjualan Dan Sistem Persediaan Produk,” Resolusi, vol. 5, no. 1, Sep. 2024, doi: https://doi.org/10.30865/resolusi.v5i1.2149.

R. Supriyadi, W. Gata, N. Maulidah, and A. Fauzi, “Penerapan Algoritma Random Forest Untuk Menentukan Kualitas Anggur Merah,” E-Bisnis : Jurnal Ilmiah Ekonomi dan Bisnis, vol. 13, no. 2, pp. 67–75, Nov. 2020, doi: 10.51903/e-bisnis.v13i2.247.

admin, “MENGENAL SISTEM POINT OF SALES (POS),” https://bbppmpvbmti.kemdikbud.go.id/main/2021/10/27/mengenal-sistem-point-of-salespos/.

A. M. M. Fattah, A. Voutama, N. Heryana, and N. Sulistiyowati, “Pengembangan Model Machine Learning Regresi sebagai Web Service untuk Prediksi Harga Pembelian Mobil dengan Metode CRISP-DM,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 5, p. 1669, Oct. 2022, doi: 10.30865/jurikom.v9i5.5021.

W.-Meng. Lee, Beginning iPhone SDK programming with Objective-C. Wiley ; John Wiley [distributor], 2010.

L. P. Sinambela, “Metodologi penelitian kuantitatif,” 2021.

A. Andreyestha and Q. N. Azizah, “Analisa Sentimen Kicauan Twitter Tokopedia Dengan Optimalisasi Data Tidak Seimbang Menggunakan Algoritma SMOTE,” Infotek : Jurnal Informatika dan Teknologi, vol. 5, no. 1, pp. 108–116, Jan. 2022, doi: 10.29408/jit.v5i1.4581.

A. Puspita, H. Amalia, and A. F. Lestari, “Penerapan Metode Waterfall dalam perancangan aplikasi sistem pembelian alat kesehatan berbasis Dekstop,” Infotek : Jurnal Informatika dan Teknologi, vol. 6, no. 2, pp. 311–318, Jul. 2023, doi: 10.29408/jit.v6i2.12974.

M. Rizky Pribadi, S. Informasi, F. Ilmu Komputer, U. Multi Data Palembang, and K. Kunci, “MDP STUDENT CONFERENCE (MSC) 2022 Perancangan UX dan UI aplikasi KulurKilir dengan pendekatan Metode design thinking,” https://jurnal.mdp.ac.id/index.php/msc/article/view/1787/564, vol. 1, no. 1, Jan. 2022.

Y. Yuliani, “Algoritma Random Forest Untuk Prediksi Kelangsungan Hidup Pasien Gagal Jantung Menggunakan Seleksi Fitur Bestfirst,” Infotek : Jurnal Informatika dan Teknologi, vol. 5, no. 2, pp. 298–306, Jul. 2022, doi: 10.29408/jit.v5i2.5896

Aris Sudianto, Lalu Kerta Wijaya, Jumawal Jumawal, and Mahpuz Mahpuz, “Penerapan Aplikasi Warung Media Berbasis Android Guna Meningkatkan Promosi dan Penjualan,” Infotek Jurnal Informatika dan Teknologi, vol. 7, no. 1, pp. 267–275, Jan. 2024, doi: https://doi.org/10.29408/jit.v7i1.24482.

Downloads

Published

20-01-2025

How to Cite

Verdiyanto, R., Hartanti, D., & Purwanto, E. (2025). Pengembangan Aplikasi Point of Sales untuk Prediksi Penjualan Harian Usaha Minuman Menggunakan Algoritma Random Forest Regression. Infotek: Jurnal Informatika Dan Teknologi, 8(1), 128–139. https://doi.org/10.29408/jit.v8i1.28386

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.