Pengenalan Bahasa Isyarat Indonesia Dengan Algoritma YOLOv8 Berbasis Mobile

Authors

  • Firmansyah Nur Hidayah Universitas Muhammadiyah Sidoarjo
  • Yunianita Rahmawati Universitas Muhammadiyah Sidoarjo
  • Yulian Findawati Universitas Muhammadiyah Sidoarjo
  • Nuril Lutvi Azizah Universitas Muhammadiyah Sidoarjo

DOI:

https://doi.org/10.29408/jit.v8i2.30189

Keywords:

BISINDO, Deaf, Sign Language, YOLOv8

Abstract

Indonesian Sign Language (BISINDO) is the primary means of communication for deaf people in Indonesia, but the general public's understanding of BISINDO is still limited, thus hampering inclusive social interaction. To overcome this obstacle, the development of an artificial intelligence-based BISINDO detection system is a promising solution. One of the latest approaches is the utilization of the YOLOv8 algorithm, which is known to have advantages in real-time object detection with high accuracy and better model efficiency compared to previous versions. The BISINDO detection system using YOLOv8 is trained with image and video datasets of Hand gestures, so that it is able to recognize various BISINDO gestures in various lighting conditions and backgrounds. The main challenge in developing this system is the limited variety of datasets and image quality, so that more diverse data collection and optimization of model parameters are needed. Integration of supporting Augmented Reality (AR) and Transfer Learning technologies also has the potential to improve the learning experience and detection accuracy. Thus, the BISINDO detection system based on YOLOv8 is expected to expand communication access, increase public awareness of BISINDO, and support the realization of a more friendly and inclusive social environment for deaf people in Indonesia

References

[1] S. N. Budiman, S. Lestanti, H. Yuana, and B. N. Awwalin, “Jurnal Teknologi dan Manajemen Informatika SIBI (Sistem Bahasa Isyarat Indonesia) berbasis Machine Learning dan Computer Vision untuk Membantu Komunikasi Tuna Rungu dan Tuna Wicara,” vol. 9, no. 2, pp. 119– 128, 2023, [Online]. Available: http://http//jurnal.unmer.ac.id/index.php/jtm i

[2] A. B. Pangestu, R. Muttaqin, and A. Sunandar, “sistem deteksi bahasa isyarat indonesia (BISINDO) menggunakan algoritma you only look once (YOLO)V8,” 2024.

[3] T. Pipit Muliyah, Dyah Aminatun, Sukma Septian Nasution, Tommy Hastomo, Setiana Sri Wahyuni Sitepu, J. GEEJ, vol. 7, no. 2, 2020.

[4] Y. Yanto, F. Aziz, and I. Irmawati, “Yolo-V8 Peningkatan Algoritma Untuk Deteksi Pemakaian Masker Wajah,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 3, pp. 1437– 1444, 2023, doi: 10.36040/jati.v7i3.7047.

[5] S. T. Informatika, U. Duta, B. Surakarta, and Komputer, “Pengembangan Website Speech To Video Bahasa Isyarat Indonesia (Bisindo) Berbasis Algoritma Long Shot Term Memory 1,” vol. 8, no. 1, 2025.

[6] D. Nafis Alfarizi, R. Agung Pangestu, D. Aditya, M. Adi Setiawan, and P. Rosyani, “Penggunaan Metode YOLO Pada Deteksi Objek: Sebuah Tinjauan Literatur Sistematis,” J. Artif. Intel. dan Sist. Penunjang Keputusan, vol. 1, no. 1, pp. 54–63, 2023, [Online]. Available: https://jurnalmahasiswa.com/index.php/aid anspk

[7] T. Akhir, “Pengembangan Model Pendeteksi Huruf Isyarat Real Time Dengan Menggunakan Yolov8,” 2023.

[8] L. Suroiyah, Y. Rahmawati, and R. Dijaya, “Facemask Detection Using Yolo V5,” J. Tek. Inform., vol. 4, no. 6, pp. 1277–1286, 2023, doi: 10.52436/1.jutif.2023.4.6.1043.

[9] R. Indra Borman and B. Priyopradono, “Implementasi Penerjemah Bahasa Isyarat Pada Bahasa Isyarat Indonesia (BISINDO) Dengan Metode Principal Component Analysis (PCA),” Z. A. Pagar Alam, vol. 03, no. 1, 2018.

[10] L. Susanti, N. K. Daulay, and B. Intan, “Sistem Absensi Mahasiswa Berbasis Pengenalan Wajah Menggunakan Algoritma YOLOv5,” JURIKOM (Jurnal Ris. Komputer), vol. 10, no. 2, p. 640, 2023, doi: 10.30865/jurikom.v10i2.6032.

[11] I. M. S. Kumara, G. P. R. S. Jati, and N. P. W. Yuniari, “Integrate Yolov8 Algorithm For Rupiah Denomination Detection In All-In- One Smart Cane For Visually Impaired,” Techno.Com, vol. 23, no. 1, pp. 176–186, 2024, doi: 10.62411/tc.v23i1.9734.

[12] Pusparini, E. Siska, M. E. I. Najoan, X, Najoan, and A. B.N., “Sistem Informasi Akademik Berbasis Mobile Web Menggunakan Pendekatan Metodologi RAD,” J. Tek. Elektro dan Komput., vol. 6, no. 4, pp. 182–193, 2017.

[13] R. Artikel, G. V. Agustin, and M. Ayub, “Deteksi dan Klasifikasi Tingkat Keparahan Jerawat : Perbandingan Metode You Only Look Once Acne Severity Detection and Classification : Comparing You Only Look Once Methods,” vol. 10, pp. 468–481, 2024.

[14] I Gusti Ngurah Bagus Putra Asmara, Made Windu Antara Kesiman, and Gede Indrawan, “Balinese Shadow Puppet Characters Detection In The Wayang Peteng Performance Using The Yolov5 Algorithm,” J. Nas. Pendidik. Tek. Inform., vol. 12, no. 3, pp. 388–397, 2023, doi: 10.23887/janapati.v12i3.65906.

[15] V. No, A. Fathiray, J. Maulindar, W. Lestari, and V. No, “Infotek : Jurnal Informatika dan Teknologi Pengembangan Sistem Penerjemah Kalimat Bahasa Isyarat Bisindo To Text Dengan Kinect Real Time Penyandang disabilitas khususnya tuna rungu dan tuna wicara sering menghadapi tantangan besar dalam berkomunikasi deng,” vol. 8, no. 1, pp. 1–12, 2025.

[16] A. Sudianto, B. A. C. Permana, Muhammad Wasil, and Harianto, “Penerapan Sistem Payment Gateway Pada E-Commerce Sebagai Upaya Peningkatan Penjualan”, INFOTEK, vol. 8, no. 1, pp. 271–279, Jan. 2025.

Downloads

Published

15-07-2025

How to Cite

Hidayah, F. N., Rahmawati, Y., Findawati, Y., & Azizah, N. L. (2025). Pengenalan Bahasa Isyarat Indonesia Dengan Algoritma YOLOv8 Berbasis Mobile. Infotek: Jurnal Informatika Dan Teknologi, 8(2), 323–333. https://doi.org/10.29408/jit.v8i2.30189

Similar Articles

<< < 1 2 3 4 

You may also start an advanced similarity search for this article.