Prediksi Kepuasan Pelanggan Berdasarkan Ulasan Produk di Lazada Indonesia Menggunakan Algoritma Decision Tree C4.5

Authors

  • Wafiq Azizah Ramadhani Universitas Bhinneka PGRI
  • Fahrur Rozi Universitas Bhinneka PGRI

DOI:

https://doi.org/10.29408/jit.v8i2.30501

Keywords:

Decision Tree C4.5, e-commerce, Lazada, Ulasan Produk, Prediction of Customer Satisfaction

Abstract

The growth of e-commerce in Indonesia continues to rise with the increasing use of internet and digital technology. Lazada, one of the largest e-commerce platforms in the country, offers a product review system that reflects customer satisfaction. However, the large volume of reviews makes it difficult for sellers to manually evaluate satisfaction levels. This study aims to predict customer satisfaction based on product reviews on Lazada Indonesia using the C4.5 Decision Tree algorithm. The research is quantitative with a data mining approach. Review data was obtained from Kaggle and went through preprocessing, exploration, model building, and testing stages. The attributes used include product name, category, price, number of reviews, and average rating, which were classified into satisfaction levels. The model was evaluated using accuracy, precision, recall, and F1-score. Results show that the C4.5 algorithm can predict customer satisfaction with 77.85% accuracy, 76.74% precision, 83.54% recall, and an F1-score of 80.00%. Product price is the most influential attribute in determining satisfaction. These findings are expected to help sellers understand the key factors influencing customer satisfaction and support improvements in service and product quality on e-commerce platforms.

References

[1] Nursania Dasopang, “Jiemas E – Commerce Bisnis Dan Internet,” J. Ilm. Ekon. Manaj. dan Syariah JIEMAS, vol. 2, pp. 129–135, 2023, [Online]. Available: https://jiemas.stai-dq.org/index.php/home

[2] D. S. Nur and A. Octavia, “Pengaruh Electronic Word of Mouth Terhadap Keputusan Pembelian Dengan Kepercayaan Konsumen Sebagai Mediasi Pada Marketplace Shopee Di Kota Jambi,” J. Manaj. Terap. dan Keuang., vol. 11, no. 2, pp. 387–399, 2022, doi: 10.22437/jmk.v11i2.17960.

[3] F. Baisyir and D. A. Prasetyo, “Analisis Perbedaan Kepuasan Konsumen Pada Pengguna E-Commerce Lazada Di Wilayah Jakarta Timur,” ProBank, vol. 7, no. 2, pp. 185–196, 2023, doi: 10.36587/probank.v7i2.1341.

[4] E. Kurniah, Reni; Putra, Dadang Yunika Surya; Diana, “Penerapan Data Mining Decission Tree Algoritma C4.5 Untuk Mengetahui Tingkat Kepuasan Mahasiswa Terhadap Layanan Akademik Dan Kemahasiswaan(Studi Kasus Universitas.Prof.Dr. Hazairin,SH),” Infotek J. Inform. dan Teknol., vol. 5, no. 2, pp. 316–326, 2022, doi: https://doi.org/10.29408/jit.v5i2.5910.

[5] E. Prasetyaningrum and P. Susanti, “Analisa Tingkat Kepuasan Pelanggan Pada Percetakan Cv. Mega Media Menggunakan Algoritma C4.5,” Sisfotenika, vol. 13, no. 1, pp. 65–75, 2023.

[6] E. D. Sikumbang, F. Ariani, T. Handayani, and K. Ramanda, “Penerapan Algoritma C4.5 Untuk Menentukan Tingkat Kepuasan Pelanggan Kartu Telkomsel Prabayar,” J. Sains Komput. Inform., vol. 6, no. September, pp. 811–820, 2022.

[7] B. V. Haekal, I. Ernawati, and N. Chamidah, “Klasifikasi Kepuasan Pengguna Layanan Aplikasi Shopee Menggunakan Metode Decision Tree C4.5,” Inform. J. Ilmu Komput., vol. 17, no. 3, p. 188, 2021, doi: 10.52958/iftk.v17i3.3648.

[8] S. M. Putri and S. A. Arnomo, “Penerapan Algoritma C4.5 Untuk Prediksi Kualitas Pelayanan Terhadap Kepuasan Konsumen (Studi Kasus: Hinet Batam),” J. Inf. Syst. Res., vol. 1, no. 2, pp. 70–76, 2020, [Online]. Available: http://ejurnal.seminar-id.com/index.php/josh/article/view/69

[9] C. R. Aditya Nugroho and T. Kristiana, “Penerapan Algoritma C4.5 Untuk Kepuasan Pelanggan Toko Online Parfume Chantik,” J. Algoritm., vol. 3, no. 1, pp. 10–21, 2022, doi: 10.35957/algoritme.v3i1.3169.

[10] E. S. Budi, A. R. Kadafi, Y. Kharismawan, R. Fadillah, and D. S. Putri, “Analisa Kepuasan Pelanggan Terhadap Layanan Aplikasi E-Commerce,” RESOLUSI Rekayasa Tek. Inform. dan Inf., vol. 4, no. 6, pp. 530–542, 2024.

[11] A. Steffany, K. A. Aldzikri, M. A. R. Tricahya, and M. I. Arfiandono, “Penerapan Algoritma C4.5 Untuk Menganalisis Kepuasan E-Commerce Shopee,” J. Nas. Komputasi dan Teknol. Inf., vol. 6, no. 6, pp. 700–706, 2023, doi: 10.32672/jnkti.v6i6.7112.

[12] K. Soewardy and G. M. G. Bororing, “Analisis Tingkat Kepuasan Pengguna Aplikasi Marketplace Tokopedia Menggunakan Algoritma C4.5,” J. Inform. dan Bisnis, vol. 11, no. 1, pp. 38–47, 2022, doi: 10.46806/jib.v11i1.883.

[13] R. A. Safitri, Y. Tajul Arifin, and M. Dhea Kirana, “Penerapan Algoritma C4.5 Untuk Klasifikasi Kepuasan Layanan Aplikasi Depok Single Window,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 4094–4102, 2024, doi: 10.36040/jati.v8i3.9865.

[14] J. Juliana and K. Keni, “Prediksi Kualitas Pelayanan Dan Kepercayaan Terhadap Loyalitas Pelanggan: Kepuasan Pelanggan Sebagai Variabel Mediasi,” J. Manajerial Dan Kewirausahaan, vol. 2, no. 1, p. 110, 2020, doi: 10.24912/jmk.v2i1.7451.

[15] M. Hamonangan Nasution and M. Iqbal Sofyan, “Penerapan Metode Decision Tree Untuk Memprediksi Prestasi Siswa Kelas XII Dilihat dari Nilai Akhir Semester di SMK Negeri 1 Selong Tahun Pelajaran 2017/2018,” Infotek J. Inform. dan Teknol., vol. 3, no. 1, pp. 58–65, 2020, doi: 10.29408/jit.v3i1.1825.

[16] A. B. Yamantri and A. Ahmad, “Penerapan Algoritma C4 . 5 Untuk Prediksi Faktor Risiko Obesitas Pada Penduduk Dewasa,” J. Komput. Antart., vol. 2, no. c, pp. 118–125, 2024.

[17] K. Wardiono and I. Firmansyah, “Hak Atas Informasiterhadap Perlindungan Hukumbagi Konsumen Dalam Jual Belionline Melalui Lazada,” Justisi, vol. 10, no. 1, pp. 1–19, 2023, doi: 10.33506/jurnaljustisi.v10i1.2255.

[18] N. F. Andriani and A. H. Setiawan, “Analisis Preferensi Konsumen Terhadap Penggunaan Produk Skincare Korea Selatan Dan Lokal,” Diponegoro J. Econ., vol. 9, no. 4, pp. 1–8, 2020, [Online]. Available: https://ejournal3.undip.ac.id/index.php/jme/article/view/29050

[19] T. H. Hasibuan and D. Mahdiana, “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Algoritma C4.5 Pada Uin Syarif Hidayatullah Jakarta,” Skanika, vol. 6, no. 1, pp. 61–74, 2023, doi: 10.36080/skanika.v6i1.2976.

[20] T. Tundo and S. ’Uyun, “Konsep Decision Tree Reptree untuk Melakukan Optimasi Rule dalam Fuzzy Inference System Tsukamoto,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 3, pp. 513–522, 2022, doi: 10.25126/jtiik.2022922601.

[21] J. Han, M. Fang, S. Ye, C. Chen, Q. Wan, and X. Qian, “Using decision tree to predict response rates of consumer satisfaction, attitude, and loyalty surveys,” Sustain., vol. 11, no. 8, 2019, doi: 10.3390/su11082306.

[22] I. Z. P. Hamdan, M. Othman, Y. M. M. Hassim, S. Marjudi, and M. M. Yusof, “Customer Loyalty Prediction for Hotel Industry Using Machine Learning Approach,” Int. J. Informatics Vis., vol. 7, no. 3, pp. 695–703, 2023, doi: 10.30630/joiv.7.3.1335.

[23] A. Sudianto, B. A. C. Permana, Muhammad Wasil, and Harianto, “Penerapan Sistem Payment Gateway Pada E-Commerce Sebagai Upaya Peningkatan Penjualan”, INFOTEK, vol. 8, no. 1, pp. 271–279, Jan. 2025. doi: 10.29408/jit.v8i1.28323

Downloads

Published

15-07-2025

How to Cite

Ramadhani, W. A., & Rozi, F. (2025). Prediksi Kepuasan Pelanggan Berdasarkan Ulasan Produk di Lazada Indonesia Menggunakan Algoritma Decision Tree C4.5. Infotek: Jurnal Informatika Dan Teknologi, 8(2), 499–510. https://doi.org/10.29408/jit.v8i2.30501

Similar Articles

<< < 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.