Penerapan Model LSTM dan CNN Untuk Klasifikasi Sentimen Pada Ulasan Aplikasi Roblox

Authors

  • Lady Agustin Fitriana Universitas Bina Sarana Informatika
  • Ipin Sugiyarto Universitas Nusa Mandiri
  • Umi Faddillah Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.29408/jit.v9i1.32848

Keywords:

Sentiment Analysis, Convolutional Neural Network (CNN), Deep Learning, Long Short-Term Memory (LSTM), Roblox

Abstract

In the rapidly evolving digital era, online gaming platforms like Roblox have transformed into complex interactive social spaces where users interact, create, and co-build virtual experiences. This study aims to compare the performance of two deep learning architectures Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) in classifying user reviews of the Roblox app from the Google Play Store into positive, negative, and neutral sentiment categories. The dataset comprises 5,000 Indonesian-language reviews collected via web scraping using the google_play_scraper library. Preprocessing involved text cleaning, case folding, tokenization, normalization of informal words, stopword removal, stemming, and lexicon-based sentiment labeling. Data were converted to numerical representations using Tokenizer and padding, then split into 80% training and 20% testing subsets. CNN achieved superior performance with 89% accuracy, 0.88 precision, 0.81 recall, and 0.83 F1-score, outperforming LSTM (86.60% accuracy, 0.80 precision, 0.82 recall, 0.81 F1-score). CNN effectively extracts spatial patterns in text, while LSTM captures temporal word dependencies. This research affirms CNN's superiority for short Indonesian text sentiment analysis, provides a deep learning benchmark for gaming app reviews, and offers practical implications for Roblox developers to interpret user feedback for feature enhancements.

References

[1] J. Lee, E. Im, I. Yeo, and G. Gim, “A Study on the Strategy of SWOT Extraction in the Metavers Platform Review Data: Using NLP Techniques,” Stud. Comput. Intell., vol. 1074, pp. 173–188, 2022, doi: 10.1007/978-3-031-19604-1_13.

[2] B. Liu, Sentiment Analysis Mining Opinions, Sentiments, and Emotions. Chicago: Cambridge University Press, 2020.

[3] F. S. Pamungkas and I. Kharisudin, “Analisis Sentimen dengan SVM, NAIVE BAYES dan KNNuntuk Studi Tanggapan Masyarakat Indonesia TerhadapPandemi Covid-19 pada Media Sosial Twitter,” Prosiding Seminar Nasional Matematika, vol. 4. pp. 1–7, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/prisma/article/view/45038.

[4] R. G. Purnasiwi, Kusrini, and M. Hanafi, “Analisis Sentimen Pada Review Produk Skincare Menggunakan Word Embedding dan Metode Long Short-Term Memory (LSTM),” Innov. J. Soc. Sci. Res., vol. 3, no. 2, pp. 11433–11448, 2023, [Online]. Available: http://j-innovative.org/index.php/Innovative/article/view/1649.

[5] W. Lu, Y. Duan, and Y. Song, “Self-Attention-Based Convolutional Neural Networks for Sentence Classification,” in 2020 IEEE 6th International Conference on Computer and Communications, ICCC 2020, 2020, pp. 2065–2069, doi: 10.1109/ICCC51575.2020.9345092.

[6] A. Ligthart, C. Catal, and B. Tekinerdogan, “Systematic reviews in sentiment analysis: a tertiary study,” Artif. Intell. Rev., vol. 54, no. 7, pp. 4997–5053, 2021, doi: 10.1007/s10462-021-09973-3.

[7] S. F. Pane, J. Ramdan, A. G. Putrada, M. N. Fauzan, R. M. Awangga, and N. Alamsyah, “A Hybrid CNN-LSTM Model with Word-Emoji Embedding for Improving the Twitter Sentiment Analysis on Indonesia’s PPKM Policy,” Proceeding - 6th Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. Appl. Data Sci. Artif. Intell. Technol. Environ. Sustain. ICITISEE 2022, pp. 51–56, 2022, doi: 10.1109/ICITISEE57756.2022.10057720.

[8] S. Imron, E. I. Setiawan, J. Santoso, and M. H. Purnomo, “Aspect Based Sentiment Analysis Marketplace Product Reviews Using BERT, LSTM, and CNN,” Jurnal RESTI, vol. 7, no. 3. academia.edu, pp. 586–591, 2023, doi: 10.29207/resti.v7i3.4751.

[9] W. Li, L. Zhu, Y. Shi, K. Guo, and E. Cambria, “User reviews: Sentiment analysis using lexicon integrated two-channel CNN–LSTM family models,” Appl. Soft Comput. J., vol. 94, 2020, doi: 10.1016/j.asoc.2020.106435.

[10] Lady Agustine Fitrana, S. Linawati, N. Herlinawati, R. Sa’adah, and S. Seimahuria, “Analisis Sentimen Pengguna Twitter Terhadap Brand Indosat Menggunakan Metode Naïve Bayes Classifier,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 4291–4297, 2024, doi: 10.36040/jati.v8i3.9866.

[11] A. Muzaki and A. Witanti, “Sentiment Analysis of the Community in the Twitter To the 2020 Election in Pandemic Covid-19 By Method Naive Bayes Classifier,” J. Tek. Inform., vol. 2, no. 2, pp. 101–107, 2021, doi: 10.20884/1.jutif.2021.2.2.51.

[12] K. M. Hasib, U. Naseem, A. J. Keya, S. Maitra, K. Mithu, and M. G. R. Alam, “Systematic Literature Review on Sentiment Analysis in Airline Industry,” SN Comput. Sci., vol. 6, no. 1, 2025, doi: 10.1007/s42979-024-03567-w.

[13] W. Jia, W. Wang, and Z. Zhang, “From simple digital twin to complex digital twin Part I: A novel modeling method for multi-scale and multi-scenario digital twin,” Adv. Eng. Informatics, vol. 53, 2022, doi: 10.1016/j.aei.2022.101706.

[14] A. H. Ombabi, W. Ouarda, and A. M. Alimi, “Deep learning CNN–LSTM framework for Arabic sentiment analysis using textual information shared in social networks,” Soc. Netw. Anal. Min., vol. 10, no. 1, 2020, doi: 10.1007/s13278-020-00668-1.

[15] N. Hossain, M. R. Bhuiyan, Z. N. Tumpa, and S. A. Hossain, “Sentiment Analysis of Restaurant Reviews using Combined CNN-LSTM,” 2020 11th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2020, 2020, doi: 10.1109/ICCCNT49239.2020.9225328.

[16] W. Lu et al., “Application of Entity-BERT model based on neuroscience and brain-like cognition in electronic medical record entity recognition,” Front. Neurosci., vol. 17, 2023, doi: 10.3389/fnins.2023.1259652.

[17] K. K. Mohbey, G. Meena, S. Kumar, and K. Lokesh, “A CNN-LSTM-Based Hybrid Deep Learning Approach for Sentiment Analysis on Monkeypox Tweets,” New Gener. Comput., vol. 42, no. 1, pp. 89–107, 2024, doi: 10.1007/s00354-023-00227-0.

[18] M. M. F. Fahima and Prasanna Sumathipala, “Sentiment Analysis and its Application in the Education Sector: A Comprehensive Review,” Elem. J. Educ. Res., vol. 3, no. 1, pp. 105–131, 2025, doi: 10.61166/elm.v3i1.89.

[19] L. Yang, Y. Li, J. Wang, and R. S. Sherratt, “Sentiment Analysis for E-Commerce Product Reviews in Chinese Based on Sentiment Lexicon and Deep Learning,” IEEE Access, vol. 8, pp. 23522–23530, 2020, doi: 10.1109/ACCESS.2020.2969854.

[20] A. Sudianto, H. Sunaryo, S. Suhartini, H. Ahmadi, H. Harianto, and L. Samsu, “Design And Build Of Web-Based Sasak Encyclopedia As An Effort In Preserving Sasak Language,” Aug. 2022. Accessed: Jul. 18, 2023. [Online]. Available: https://iocscience.org/ejournal/index.php/mantik/article/view/2631

Downloads

Published

20-01-2026

How to Cite

Agustin Fitriana, L., Sugiyarto, I., & Faddillah, U. (2026). Penerapan Model LSTM dan CNN Untuk Klasifikasi Sentimen Pada Ulasan Aplikasi Roblox. Infotek: Jurnal Informatika Dan Teknologi, 9(1), 71–82. https://doi.org/10.29408/jit.v9i1.32848

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.