Penerapan Algoritma K-Means Dalam Mengelompokkan Ruang Pasien BPJS Untuk Menentukan Pola Perawatan Kesehatan Yang Efektif

Authors

DOI:

https://doi.org/10.29408/jit.v9i1.33079

Keywords:

Analysis, Clustering, K-means

Abstract

The National Health Insurance organizer managed by BPJS Kesehatan plays a crucial role in ensuring equitable and quality healthcare services for all Indonesian citizens. The increasing number of BPJS participants encourages healthcare facilities to implement more efficient data-driven management. Fakhira Clinic in East Lombok still faces challenges in managing treatment rooms and formulating service strategies due to suboptimal use of data analysis, causing decisions to often be made reactively.This study aims to apply the K-Means clustering algorithm to group BPJS patient rooms. The K-Means algorithm is used to cluster BPJS patients based on their characteristics and service needs, such as gender, age, type of illness, visit frequency, duration of treatment, and payment method. Analysis of 500 BPJS patient data resulted in three main clusters: 217 patients with light treatment patterns, 158 patients with moderate care needs, and 125 patients with intensive care requirements. Each cluster shows different tendencies regarding age, length of hospital stay, and diagnosis. This information can be utilized as a basis for arranging treatment rooms, accelerating service processes, and formulating more effective and targeted care strategies.

References

[1] J. Wandana, S. Defit, and S. Sumijan, “Klasterisasi Data Rekam Medis Pasien Pengguna Layanan BPJS Kesehatan Menggunakan Metode K-Means,” J. Inf. dan Teknol., pp. 119–125, 2020.

[2] Otoritas Jasa Keuangan, “Otoritas Jasa Keuangan berdasarkan,” 2022.

[3] A. M. Nur, H. Bahtiar, and M. A. Jannah, “Implementasi Algoritma K-Means Clustering Dalam Mengelompokkan Kepatuhan Wajib Pajak Bumi dan Bangunan Dengan Optimasi Elbow,” Infotek J. Inform. dan Teknol., vol. 8, no. 1, pp. 181–192, 2025.

[4] A. Ali and L. Masyfufah, “Klasterisasi Pasien BPJS Dengan Metode K-Means Clustering Guna Menunjang Program Jaminan Kesehatan Nasional Di Rumah Sakit Anwar Medika Balong Bendo Sidoarjo,” J. Wiyata Penelit. Sains dan Kesehat., pp. 8–22, 2021.

[5] N. Nurhidayati, L. Mauliya, and S. Suhartini, “Clustering Data Pasien Covid Berdasarkan Usia dan Gejala Menggunakan Algoritma K-Means,” Infotek J. Inform. dan Teknol., vol. 6, no. 2, pp. 443–452, 2023, doi: 10.29408/jit.v6i2.17488.

[6] N. Salsabila, K. Aulisari, and H. Z. Zahro, “Penerapan Algoritma K-Means Untuk Klasterisasi Produktivitas Tanaman Jahe,” Infotek J. Inform. dan Teknol., vol. 8, no. 1, pp. 228–238, 2025.

[7] A. M. Nur, M. Saiful, H. Bahtiar, and M. T. Hidayat, “Penerapan Algoritma K-Means Clustering Dalam Mengelompokkan Smartphone Yang Rekomendasi Berdasarkan Spesifikasi,” Infotek J. Inform. dan Teknol., vol. 7, no. 2, pp. 478–488, 2024.

[8] M. Qusyairi, Z. Hidayatullah, and A. Sandi, “Penerapan K-Means Clustering Dalam Pengelompokan Prestasi Siswa Dengan Optimasi Metode Elbow,” Infotek J. Inform. dan Teknol., vol. 7, no. 2, pp. 500–510, 2024.

[9] P. Trisnawati and A. I. Purnamasari, “Penerapan pengelompokkan produktivitas hasil pertanian menggunakan algoritma K-Means,” Infotek J. Inform. dan Teknol., vol. 6, no. 2, pp. 249–257, 2023.

[10] Z. Setiawan et al., BUKU AJAR DATA MINING. PT. Sonpedia Publishing Indonesia, 2023.

[11] N. K. Zuhal, “Study Comparison K-Means Clustering Dengan Algoritma Hierarchical Clustering: AHC, K-Means Clustering, Study Comparison,” in Seminar Nasional Teknologi & Sains, 2022, pp. 200–205.

[12] M. Miranda, N. Rahaningsih, and R. D. Dana, “Analisis Clustering Data Anak Balita di Posyandu Kampung Sukarame Menggunakan Algoritma K-Means,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 136–141, 2024.

[13] P. W. Rahayu et al., Buku Ajar Data Mining. PT. Sonpedia Publishing Indonesia, 2024.

[14] C. Carudin et al., Buku Ajar Data Mining. PT. Sonpedia Publishing Indonesia, 2024.

[15] N. Tou and P. M. Endraswari, “Implementasi Data Mining Dalam Klasifikasi Hasil Diagnosa Pasien Bpjs Menggunakan Algoritma Cart,” JIKA (Jurnal Inform., vol. 6, no. 2, pp. 170–179, 2022.

[16] W. B. Laksono, Y. Syahidin, and Y. Yunengsih, “Implementasi Data Mining Klasterisasi Data Pasien Rawat Inap dengan Algoritma K-Means Clustering,” vol. 7, no. 2, pp. 621–627, 2024, doi: 10.32493/jtsi.v7i2.39354.

Downloads

Published

20-01-2026

How to Cite

Nur, A. M., Yahya, FIlkhaer, R., & Suhartini. (2026). Penerapan Algoritma K-Means Dalam Mengelompokkan Ruang Pasien BPJS Untuk Menentukan Pola Perawatan Kesehatan Yang Efektif. Infotek: Jurnal Informatika Dan Teknologi, 9(1), 174–185. https://doi.org/10.29408/jit.v9i1.33079

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.