Analisis Komparatif Support Vector Regression dan Decision Tree Regression untuk Peramalan Kasus HIV Jawa Barat

Authors

  • Risqi Agung Alamsyah Universitas Budi Luhur
  • Safitri Juanita Universitas Budi Luhur

DOI:

https://doi.org/10.29408/jit.v9i1.33397

Keywords:

Decision Tree Regression, Support Vector Regression, Forecasting, West Java, HIV

Abstract

The increasing number of HIV cases in Indonesia, particularly in West Java, which ranks among the regions with the highest infection rates, highlights the need for forecasting models capable of producing accurate estimates to support health policy planning. This situation underscores the importance of analytical approaches that can capture the dynamic progression of cases over time. This study aims to develop a forecasting model for the number of HIV cases in West Java by applying the CRISP-DM framework and utilizing a dataset categorized by age group for the period 2019–2023. Two regression algorithms, Support Vector Regression (SVR) and Decision Tree Regression (DTR), were compared using three evaluation metrics: Coefficient of Determination (R²), Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE). The findings indicate that DTR delivers superior performance, achieving an R² of 83.62, RMSE of 32.29, and MAPE of 33.30. In contrast, SVR produced an R² of 36.33, RMSE of 84.01, and MAPE of 44.87. Based on these results, Decision Tree Regression is identified as the more effective model for forecasting the number of HIV cases in West Java, providing practical support for health policy decision-making, resource allocation, and prioritization of targeted prevention and intervention programs at the regional level.

References

[1] Kemenkes, “Berani Tes, Berani Lindungi Diri, Kemenkes Targetkan Eliminasi HIV dan IMS Tahun 2030,” https://kemkes.go.id/, 2025.

[2] N. S. Surjandari et al., “Sosialisasi Pencegahan HIV/AIDS dan Penyalahgunaan Narkoba di Desa Winong, Kecamatan Mirit, Kabupaten Kebumen,” Kreasi J. Inov. dan Pengabdi. Kpd. Masy., vol. 2, no. 2, pp. 219–225, 2022.

[3] P. Taniwan, A. F. Bilbina, C. R. S. Ganap, and D. Y. Faidah, “Pemodelan Faktor-Faktor yang memengaruhi Kejadian HIV/AIDS di Provinsi Jawa Barat,” IMEIJ Indo-mathEdu Intellectuals J., vol. 5, no. 3, pp. 3298–3308, 2024.

[4] A. T. Nurani, A. Setiawan, and B. Susanto, “Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma,” J. Sains dan Edukasi Sains, vol. 6, no. 1, pp. 34–43, 2023.

[5] D. Parbat and M. Chakraborty, “A python based support vector regression model for prediction of COVID19 cases in India,” Chaos, Solitons & Fractals, vol. 138, no. 109942, pp. 1–5, 2020, doi: 10.1016/j.chaos.2020.109942.

[6] M. T. Siregar, G. M. A. Sasmita, and G. A. A. Putri, “Perbandingan Analisis Metode Peramalan Jumlah Kasus Penyakit Menular di Kota Bandung (Studi Kasus: Dinas Kesehatan Kota Bandung),” JITTER J. Ilm. Teknol. dan Komput., vol. 3, no. 1, pp. 831–842, 2022.

[7] I. S. I. Putri, R. S. Pradini, and M. Anshori, “Decision Tree Regression untuk Prediksi Prevalensi Stunting di Provinsi Nusa Tenggara Timur,” J. Teknlogi Inform. dan Komput. MH. Thamrin, vol. 10, no. 2, pp. 413–427, 2024.

[8] F. Akbar, H. W. Saputra, A. K. Maulaya, M. F. Hidayat, and R. Rahmaddeni, “Implementasi Algoritma Decision Tree C4.5 dan Support Vector Regression untuk Prediksi Penyakit Stroke,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 2, pp. 61–67, 2022.

[9] H. A. F. Sinaga, “HIV/AIDS,” Med. Lab. J., vol. 3, no. 2, pp. 45–52, 2025.

[10] B. A. C. Permana, M. Sadali, and R. Ahmad, “Penerapan Model Decision Tree Menggunakan Python Untuk Prediksi Faktor Dominan Penyebab Penyakit Stroke,” J. Inform. dan Teknol., vol. 7, no. 1, pp. 23–31, 2024, [Online]. Available: https://e-journal.hamzanwadi.ac.id/index.php/infotek/article/view/23232.

[11] B. A. C. Permana and M. Djamaluddin, “Penerapan Python Dalam Data Mining Untuk Prediksi Kangker Paru,” Infotek J. Inform. dan Teknol., vol. 6, no. 2, pp. 470–477, 2023, doi: 10.29408/jit.v6i2.17816.

[12] R. F. Putra et al., DATA MINING: Algoritma dan Penerapannya. Jambi: PT. Sonpedia Publishing Indonesia, 2023.

[13] C. Schröer, F. Kruse, and J. M. Gómez, “A Systematic Literature Review on Applying CRISP-DM Process Model,” Procedia Comput. Sci., vol. 181, pp. 526–534, 2021, doi:https://doi.org/10.1016/j.procs.2021.01.199.

[14] I. Koumarelas, L. Jiang, and F. Naumann, “Data Preparation for Duplicate Detection,” J. Data Inf. Qual., vol. 12, no. 3, pp. 1–24, 2020, doi: 10.1145/3377878.

[15] WHO, “Prevalence of HIV among adults aged 15 to 49 (%),” https://www.who.int/, 2025. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-hiv-among-adults-aged-15-to-49-(-) (accessed Jan. 01, 2024).

[16] M. Jena and S. Dehuri, “Decision Tree for Classification and Regression : A State-of-the Art Review,” Informatica, vol. 44, pp. 405–420, 2020.

[17] D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient ofdetermination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, no. e623, pp. 1–24, 2021, doi: 10.7717/peerj-cs.623.

[18] H. Hewamalage, K. Ackermann, and C. Bergmeir, “Forecast evaluation for data scientists: common pitfalls and best practices,” Data Min. Knowl. Discov., vol. 37, no. 2, pp. 788–832, 2023, doi: 10.1007/s10618-022-00894-

[19] A. Sudianto, B. A. C. Permana, Muhammad Wasil, and Harianto, “Penerapan Sistem Payment Gateway Pada E-Commerce Sebagai Upaya Peningkatan Penjualan”, INFOTEK, vol. 8, no. 1, pp. 271–279, Jan. 2025. doi: 10.29408/jit.v8i1.28323

Downloads

Published

20-01-2026

How to Cite

Alamsyah, R. A., & Juanita, S. (2026). Analisis Komparatif Support Vector Regression dan Decision Tree Regression untuk Peramalan Kasus HIV Jawa Barat. Infotek: Jurnal Informatika Dan Teknologi, 9(1), 240–250. https://doi.org/10.29408/jit.v9i1.33397