Sistem Rekomendasi Beasiswa Prestasi Akademik Berdasarkan Nilai Rata-Rata Dan Indeks Prestasi Kumulatif Menggunakan Logika Fuzz

Authors

  • Yoana Nabilah Putri Universitas Esa Unggul
  • Adelia Rafa Farzana Universitas Esa Unggul
  • Muhammad Fahad Universitas Esa Unggul
  • Hania Ayu Karin Universitas Esa Unggul
  • Vitri Tundjungsari Universitas Esa Unggul

DOI:

https://doi.org/10.29408/jit.v9i1.33733

Keywords:

Average Score, Fuzzy Logic, GPA, python, Recommendation System, Scholarship

Abstract

Scholarships play a crucial role in enhancing student motivation and academic achievement. However, the selection process often faces challenges in objectively determining eligibility. This study aims to develop an Artificial Intelligence-based scholarship recommendation system using a fuzzy logic approach to address uncertainty and variation in academic grades. The main contribution of this research is improving the objectivity and adaptability of the scholarship selection system through a fuzzy logic approach capable of assessing eligibility in a gradual and proportional manner. Data were collected from various publicly published scholarship agencies, including GPA, grade point average, and other academic requirements. The method used involves fuzzification to convert numerical data into fuzzy sets, applying fuzzy rules in the inference process, and defuzzification to generate consistently interpretable recommendation scores. The system was built using Python on the Google Colab platform and evaluated through white-box testing to ensure all internal logic flows work as designed. The results show that the fuzzy approach can provide more adaptive and objective recommendations compared to fixed threshold-based selection methods. The practical benefit of this system is to provide scholarship institutions with a transparent, efficient decision support tool that reduces subjectivity in the selection process.

References

[1] R. Zulkarnain, R. Hardi, and U. Mulia, “Employing Fuzzy AHP (Mundzir dkk,” Jurnal Malikussaleh Mengabdi, vol. 2, no. 2, 2023, doi: 10.29103/jmm.

[2] D. Kurnia and E. Maiyana, “The Selection of KORPRI Scholarship Recipients Using Sugeno’s Fuzzy Logic,” Knowbase : International Journal of Knowledge in Database, vol. 3, no. 2, p. 116, Dec. 2023, doi: 10.30983/knowbase.v3i2.6585.

[3] A. D. Novianto, I. N. Farida, and J. Sahertian, “Alat Penyiram Tanaman Otomatis Berbasis IoT Menggunakan Metode Fuzzy Logic.”

[4] M. Yunus, M. Rodi, and T. Akbar, “Penerapan Algoritma Fuzzy Tahani Untuk Rekomendasi Penerima Beasiswa Peningkatan Prestasi Akademik (Application of Fuzzy Tahani Algorithm for Academic Achievement Improvement Scholarship Recipients Recommendation),” vol. 3, no. 2, pp. 113–119, 2021.

[5] W. Apriliani, A. Abi Dzar Makkasau, and N. Afny CAndryani, “Penerapan Fuzzy Inference System Metode Mamdani Untuk Penentuan Besaran Persentase Beasiswa Mahasiswa Baru Universitas Tanri Abeng,” 2018.

[6] R. Br Ginting and M. Br Ginting, “Aplikasi Logika Fuzzy untuk Penentuan Beasiswa Peningkatan Prestasi Akademik Menggunakan Metode Fuzzy Mamdani pada ITB Indonesia. Oleh : Raheliya Br. Ginting, Nirwan Sinuhaji, Siti Indriyastri Dewi,” Meiliyani Br Ginting, vol. 6, no. 1, 2021, [Online]. Available: http://ejournal.ust.ac.id/index.php/Jurnal_Means/70s

[7] M. Yunus and M. R. T. Akbar, “Penerapan Algoritma Fuzzy Tahani Untuk Rekomendasi Penerima Beasiswa Peningkatan Prestasi Akademik,” JTIM : Jurnal Teknologi Informasi dan Multimedia, vol. 3, no. 2, pp. 114–120, 2021, doi: 10.35746/jtim.v3i2.161.

[8] F. Adella Putri and R. Sulaiman, “Tahun 2021 Evaluasi Kinerja Akademik Mahasiswa S1 Matematika Universitas Negeri Surabaya Angkatan 2019 Menggunakan Teknik Logika Fuzzy”.

[9] “Dasar Machine Learning_v.3.0_FULL ISBN”.

[10] Wakim and A. Wibowo, “Implementasi Mixed Methods Pada Sistem Pendukung Keputusan Bantuan Peternakan,” Jurnal Ilmiah Sistem Informasi, vol. 4, no. 3, pp. 257–268, Jun. 2025, doi: 10.51903/3kdw3211.

[11] P. Warmare Kabupaten Manokwari and N. Jamila Manajemen Informatika STMIK Kreatindo Manokwari, “"Implementasi Sistem Penentuan Status Gizi Balita Menggunakan Metode Mamdani Pada Implementasi Sistem Penentuan Status Gizi Balita Menggunakan Metode Mamdani Pada Puskesmas Warmare Kabupaten Manokwari.”

[12] I. Riali, M. Fareh, and F. Bobillo, “ProbFuzzOnto: A Fuzzy Ontology-Driven Uncertainty Approach Using Fuzzy Bayesian Networks,” International Journal of Fuzzy Systems, vol. 27, no. 3, pp. 680–700, Apr. 2025, doi: 10.1007/s40815-024-01796-y.

[13] M. Y. Ambon, J. V. Lili, V. Bandhaso, M. Wati, and A. Septiarini, “Implementasi Logika Fuzzy Mamdani Dalam Klasifikasi Kategori Berat Badan Berbasis IMT,” Infotek: Jurnal Informatika dan Teknologi, vol. 8, no. 2, pp. 606–617, Jul. 2025, doi: 10.29408/jit.v8i2.30637.

[14] D. D. Aulia and W. Warisa, “Menentukan Tingkat Produksi Bakso Dari Tahun 2019-2020 Dengan Teknik Artificial Intelligence Menggunakan Metode Fuzzy Mamdani,” Infotek: Jurnal Informatika dan Teknologi, vol. 4, no. 1, pp. 105–112, Jan. 2021, doi: 10.29408/jit.v4i1.3058.

[15] H. Wu and Z. S. Xu, “Fuzzy Logic in Decision Support: Methods, Applications and Future Trends,” International Journal of Computers, Communications and Control, vol. 16, no. 1, pp. 1–28, 2021, doi: 10.15837/ijccc.2021.1.4044

[16] A. Sudianto, M. Wasil, and M. Mahpuz, “Penerapan Sistem Informasi Geografis dalam Pemetaan Sebaran Kasus Gizi Buruk,” Infotek : Jurnal Informatika dan Teknologi, vol. 4, no. 2, pp. 142–150, Jul. 2021, doi: 10.29408/jit.v4i2.3559.

Downloads

Published

20-01-2026

How to Cite

Putri, Y. N., Farzana, A. R., Muhammad Fahad, Karin, H. A., & Vitri Tundjungsari. (2026). Sistem Rekomendasi Beasiswa Prestasi Akademik Berdasarkan Nilai Rata-Rata Dan Indeks Prestasi Kumulatif Menggunakan Logika Fuzz. Infotek: Jurnal Informatika Dan Teknologi, 9(1), 331–341. https://doi.org/10.29408/jit.v9i1.33733

Similar Articles

<< < 12 13 14 15 16 17 18 19 20 21 > >> 

You may also start an advanced similarity search for this article.