Understanding Information System Continuance Intention In The Indonesian Public Sector

Authors

  • Adi Prasetyo Department of Management, Faculty of Economics and Business, Universitas Indonesia, Depok, Indonesia
  • Muhammad Irfan Syaebani Department of Management, Faculty of Economics and Business, Universitas Indonesia, Depok, Indonesia

DOI:

https://doi.org/10.29408/jpek.v8i3.26325

Keywords:

Enjoyment; Self-Efficacy; Continuance Intention; Expectation Confirmation Model; Public Sector.

Abstract

Employing the framework of the Expectation Confirmation Model within the Indonesian public sector context. This research endeavoured to explore the impact of satisfaction, self-efficacy, perceived usefulness, enjoyment, and confirmation on the continuance intention of information systems. The study engaged 436 employees from the Indonesian State Revenue Organization as participants. Utilizing a 7-point Likert scale, online surveys were administered to collect data, subsequently subjected to analysis employing Lisrel 8.8 and Structural Equation Modelling (SEM). The results suggested that self-efficacy and confirmation were strong predictors of perceived usefulness. There existed a strong and positive association between confirmation and satisfaction, perceived usefulness and satisfaction as well as enjoyment and satisfaction. Satisfaction acted as a partial mediation variable between perceived usefulness and continuance intention as well as between enjoyment and continuance intention. Hereafter, the relationship between self-efficacy and continuance intention was influenced by perceived usefulness as the indirect-only mediator. In addition, the relationship between confirmation and continuance intention was influenced by satisfaction as the indirect-only mediator. Ultimately, the continuance intention in information systems was strongly associated with satisfaction, enjoyment,  and perceived usefulness

Author Biography

Muhammad Irfan Syaebani, Department of Management, Faculty of Economics and Business, Universitas Indonesia, Depok, Indonesia

Department of Management, Faculty of Economics and Business, Universitas Indonesia, Depok, Indonesia 

References

Akdim, K., Casaló, L. V., & Flavián, C. (2022). The role of utilitarian and hedonic aspects in the continuance intention to use social mobile apps. Journal of Retailing and Consumer Services, 66, 102888. https://doi.org/10.1016/j.jretconser.2021.102888

Al-Adwan, A. S., Li, N., Al-Adwan, A., Abbasi, G. A., Albelbisi, N. A., & Habibi, A. (2023). Extending the technology acceptance model (TAM) to predict university students’ intentions to use metaverse-based learning platforms. Education and Information Technologies, 28(11), 15381–15413. https://doi.org/10.1007/s10639-023-11816-3

Alruwaie, M., El-Haddadeh, R., & Weerakkody, V. (2020). Citizens’ continuous use of eGovernment services: The role of self-efficacy, outcome expectations and satisfaction. Government Information Quarterly, 37(3), 101485. https://doi.org/10.1016/j.giq.2020.101485

Alshammari, T. (2023). Factors affecting continuance intention of M-Government: An empirical study. International Journal of E-Business Research, 19(1), 1–23. https://doi.org/10.4018/IJEBR.326550

Alyoussef, I. Y. (2023). Acceptance of e-learning in higher education: The role of task-technology fit with the information systems success model. Heliyon, 9(3), e13751. https://doi.org/10.1016/j.heliyon.2023.e13751

Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122–147. https://doi.org/10.1037/0003-066X.37.2.122

Bandura, A. (1986). Social Foundations of Thought and Action: A social cognitive Theory (pp. xiii, 617). Prentice-Hall, Inc.

Bandura, A. (1997). Self-Efficacy: The Exercise of Control. W.H. Freeman.

Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351. https://doi.org/10.2307/3250921

Capistrano, E. P., Gomez, M. M. E., & Isleta, A. P. M. (2023). Examining trust, self-efficacy, and technology acceptance in the Philippines’ e-commerce sectors. Information Development, 026666692311538. https://doi.org/10.1177/02666669231153837

Chahal, J., & Rani, N. (2022). Exploring the acceptance for e-learning among higher education students in India: Combining technology acceptance model with external variables. Journal of Computing in Higher Education, 34(3), 844–867. https://doi.org/10.1007/s12528-022-09327-0

Cheng, Y.-M. (2020). Quality antecedents and performance outcome of cloud-based hospital information system continuance intention. Journal of Enterprise Information Management, 33(3), 654–683. https://doi.org/10.1108/JEIM-04-2019-0107

Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189. https://doi.org/10.2307/249688

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111–1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x

El-Haddadeh, R., Weerakkody, V., Osmani, M., Thakker, D., & Kapoor, K. K. (2019). Examining citizens’ perceived value of internet of things technologies in facilitating public sector services engagement. Government Information Quarterly, 36(2), 310–320. https://doi.org/10.1016/j.giq.2018.09.009

Foroughi, B., Iranmanesh, M., Kuppusamy, M., Ganesan, Y., Ghobakhloo, M., & Senali, M. G. (2023). Determinants of continuance intention to use gamification applications for task management: An extension of technology continuance theory. The Electronic Library, 41(2/3), 286–307. https://doi.org/10.1108/EL-05-2022-0108

Franque, F. B., Oliveira, T., Tam, C., & Santini, F. D. O. (2020). A meta-analysis of the quantitative studies in continuance intention to use an information system. Internet Research, 31(1), 123–158. https://doi.org/10.1108/INTR-03-2019-0103

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis (Eighth edition). Cengage.

Hayes, A. F. (2018). Introduction To Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach (Second edition). The Guilford Press.

Hong, S., Thong, J. Y. L., & Tam, K. Y. (2006). Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decision Support Systems, 42(3), 1819–1834. https://doi.org/10.1016/j.dss.2006.03.009

Islam, M. T., Talukder, Md. S., Khayer, A., & Islam, A. K. M. N. (2023). Exploring continuance usage intention toward open government data technologies: An integrated approach. VINE Journal of Information and Knowledge Management Systems, 53(4), 785–807. https://doi.org/10.1108/VJIKMS-10-2020-0195

Jangir, K., Sharma, V., Taneja, S., & Rupeika-Apoga, R. (2022). The Moderating effect of perceived risk on users’ continuance intention for fintech services. Journal of Risk and Financial Management, 16(1), 21. https://doi.org/10.3390/jrfm16010021

Jo, H. (2022). Antecedents of continuance intention of social networking services (SNS): Utilitarian, hedonic, and social contexts. Mobile Information Systems, 2022, 1–14. https://doi.org/10.1155/2022/7904124

Kamble, A., Upadhyay, N., & Abhang, N. (2024). Navigating the learning landscape: Social cognition and task-technology fit as predictors for MOOCs continuance Intention by sales professionals. The International Review of Research in Open and Distributed Learning, 25(1), 24–44. https://doi.org/10.19173/irrodl.v25i1.7567

Katadata. (2022). Mayoritas Warga RI Belum Pernah Akses Layanan Publik Online. Artikel Ini Diakses Pada Tanggal 10 Februari 2024. https://databoks.katadata.co.id/datapublish/2022/07/22/mayoritas-warga-ri-belum-pernah-akses-layanan-publik-online

Lee, M.-C. (2010). Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation–confirmation model. Computers & Education, 54(2), 506–516. https://doi.org/10.1016/j.compedu.2009.09.002

Leon, S. (2018). Service mobile apps: A millennial generation perspective. Industrial Management & Data Systems, 118(9), 1837–1860. https://doi.org/10.1108/IMDS-10-2017-0479

Li, X., Wang, X., & Wei, C. (2022). Antecedents of continuance intention in online learning systems among vocational college students: The moderating effect of gender. Frontiers in Psychology, 13, 1088270. https://doi.org/10.3389/fpsyg.2022.1088270

Li, Y., & Wang, J. (2021). Evaluating the impact of information system quality on continuance intention toward cloud financial information system. Frontiers in Psychology, 12, 713353. https://doi.org/10.3389/fpsyg.2021.713353

Liao, S., Hong, J.-C., Wen, M.-H., Pan, Y.-C., & Wu, Y.-. (2018). Applying technology acceptance model (TAM) to explore users’ behavioral intention to adopt a performance assessment system for e-book production. EURASIA Journal of Mathematics, Science and Technology Education, 14(10). https://doi.org/10.29333/ejmste/93575

Lu, J., Liu, C., & Wei, J. (2017). How important are enjoyment and mobility for mobile applications? Journal of Computer Information Systems, 57(1), 1–12. https://doi.org/10.1080/08874417.2016.1181463

Mao, Z., Zou, Q., Bu, T., Dong, Y., & Yan, R. (2023). Understanding the role of service quality of Government APPs in continuance intention: An expectation–confirmation perspective. SAGE Open, 13(4), 21582440231201218. https://doi.org/10.1177/21582440231201218

Media Keuangan. (2023). PSIAP untuk Layanan Pajak Lebih Mantap. Artikel ini diakses pada tanggal 10 Februari 2024. https://mediakeuangan.kemenkeu.go.id/article/show/psiap-untuk-layanan-pajak-lebih-mantap

MenPANRB. (2024). Hasil Evaluasi Sistem Pemerintahan Berbasis Elektronik Pada Instansi Pusat dan Pemerntah Daerah Tahun 2023.

Monowida, A. (2023). Menyambut Pembaruan Sistem Administrasi Pajak. Artikel ini diakses pada tanggal 10 Februari 2024. https://news.detik.com/kolom/d-6821267/menyambut-pembaruan-sistem-administrasi-pajak

Nascimento, B., Oliveira, T., & Tam, C. (2018). Wearable technology: What explains continuance intention in smartwatches? Journal of Retailing and Consumer Services, 43, 157–169. https://doi.org/10.1016/j.jretconser.2018.03.017

Nguyen, G.-D., & Dao, T.-H. T. (2024). Factors influencing continuance intention to use mobile banking: An extended expectation-confirmation model with moderating role of trust. Humanities and Social Sciences Communications, 11(1), 276. https://doi.org/10.1057/s41599-024-02778-z

Oghuma, A. P., Libaque-Saenz, C. F., Wong, S. F., & Chang, Y. (2016). An expectation-confirmation model of continuance intention to use mobile instant messaging. Telematics and Informatics, 33(1), 34–47. https://doi.org/10.1016/j.tele.2015.05.006

Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460. https://doi.org/10.2307/3150499

Organisasi Pendapatan Negara. (2020). Laporan Tahunan OPN 2019. Jakarta: Organisasi Pendapatan Negara.

Organisasi Pendapatan Negara. (2021). Laporan Tahunan OPN 2020. Jakarta: Organisasi Pendapatan Negara.

Organisasi Pendapatan Negara. (2022). Laporan Tahunan OPN 2021. Jakarta: Organisasi Pendapatan Negara.

Organisasi Pendapatan Negara. (2023). Laporan Tahunan OPN 2022. Jakarta: Organisasi Pendapatan Negara.

Pereira, R., & Tam, C. (2021). Impact of enjoyment on the usage continuance intention of video-on-demand services. Information & Management, 58(7), 103501. https://doi.org/10.1016/j.im.2021.103501

Rahimullah, N. A., Damayanti, S. B., Izra, A. A., & Handayani, P. W. (2022). Assessing the factors influencing users accessing higher education content on TikTok. Cogent Education, 9(1), 2148498. https://doi.org/10.1080/2331186X.2022.2148498

Rekha, I. S., Shetty, J., & Basri, S. (2023). Students’ continuance intention to use MOOCs: Empirical evidence from India. Education and Information Technologies, 28(4), 4265–4286. https://doi.org/10.1007/s10639-022-11308-w

Shiau, W.-L., Yuan, Y., Pu, X., Ray, S., & Chen, C. C. (2020). Understanding fintech continuance: Perspectives from self-efficacy and ECT-IS theories. Industrial Management & Data Systems, 120(9), 1659–1689. https://doi.org/10.1108/IMDS-02-2020-0069

Suzianti, A., & Paramadini, S. A. (2021). Continuance Intention of e-learning: The condition and its connection with open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 97. https://doi.org/10.3390/joitmc7010097

Tam, C., Santos, D., & Oliveira, T. (2020). Exploring the influential factors of continuance intention to use mobile Apps: Extending the expectation confirmation model. Information Systems Frontiers, 22(1), 243–257. https://doi.org/10.1007/s10796-018-9864-5

Thong, J. Y. L., Hong, S.-J., & Tam, K. Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64(9), 799–810. https://doi.org/10.1016/j.ijhcs.2006.05.001

United Nations. (2022). E-Government Survey 2022. Department of Economic and Social Affairs.

Van Der Heijden. (2004). User acceptance of hedonic information systems. MIS Quarterly, 28(4), 695. https://doi.org/10.2307/25148660

Venkatesh, Morris, Davis, & Davis. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540

Yang, H. (2024). Factors impacting college student satisfaction, perceived usefulness, and continuance intention with e-learning in Dezhou, China. Scholar: Human Sciences, 16(1), Article 1. https://doi.org/10.14456/shserj.2024.18

Yuan, S., Liu, Y., Yao, R., & Liu, J. (2016). An investigation of users’ continuance intention towards mobile banking in China. Information Development, 32(1), 20–34. https://doi.org/10.1177/0266666914522140

Yuduang, N., Ong, A. K. S., Prasetyo, Y. T., Chuenyindee, T., Kusonwattana, P., Limpasart, W., Sittiwatethanasiri, T., Gumasing, Ma. J. J., German, J. D., & Nadlifatin, R. (2022). Factors influencing the perceived effectiveness of COVID-19 risk assessment mobile application “MorChana” in Thailand: UTAUT2 approach. International Journal of Environmental Research and Public Health, 19(9), 5643. https://doi.org/10.3390/ijerph19095643

Zhao, X., Lynch, J. G., & Chen, Q. (2010). Reconsidering Baron and Kenny: Myths and truths about mediation analysis. Journal of Consumer Research, 37(2), 197–206. https://doi.org/10.1086/651257

Downloads

Published

2024-12-25