Analisis Kelangsungan Hidup Pasien Gagal Ginjal di RS Hasanuddin dengan Model Eksponensial 2 Parameter Tersensor Tipe 2

Authors

  • Hasanatul Qudusiah Program Studi Statistika Universitas Hamzanwadi
  • Yuva Denia Program Studi Statistika Universitas Hamzanwadi
  • Rini Purnami Program Studi Statistika Universitas Hamzanwadi
  • Delta Selvia Program Studi Statistika Universitas Hamzanwadi
  • Umam Hidayaturrohman Program Studi Statistika Universitas Hamzanwadi
  • Basirun Program Studi Statistika Universitas Hamzanwadi

DOI:

https://doi.org/10.29408/eksbar.v2i2.29201

Keywords:

Parameter estimation, Two-Parameter Exponential Distribution, Exponential model

Abstract

This study aims to estimate the survival probability of chronic kidney failure patients treated at Hasanuddin University Hospital during the period 2018–2020 using a two-parameter exponential survival model with Type II censoring. Survival analysis was conducted on patient survival time data by applying the two-parameter exponential distribution, where parameter estimation was performed using the Maximum Likelihood Estimation (MLE) method, followed by the construction of confidence intervals for both model parameters and survival functions. The analysis focused on estimating survival probabilities at 60 and 72 months to evaluate long-term patient outcomes. The results show that the estimated survival probability at 60 months is higher than at 72 months, indicating a decreasing survival pattern over time. Furthermore, the confidence interval for the survival function at 60 months is wider than that at 72 months, reflecting greater uncertainty in longer-term survival estimation. These findings suggest that the two-parameter exponential model adequately captures the survival characteristics of chronic kidney failure patients under Type II censoring. In conclusion, the application of this model provides reliable survival estimates and can be effectively utilized in medical survival studies involving censored data. The results of this study have important implications for healthcare providers and hospital management in assessing patient prognosis, planning long-term treatment strategies, and optimizing the allocation of medical resources.

References

Ainurrochmah, A. (2021). Analisis survival competing risk pada model subdistribution Fine–Gray dengan metode maximum partial likelihood estimation (Studi kasus: Pasien COVID-19 di Rumah Sakit Islam Sultan Agung, Semarang) (Disertasi doktoral). Institut Teknologi Sepuluh Nopember.

Artanti, L. W. (2007). Estimasi interval bagi fungsi tahan hidup dari data berdistribusi eksponensial dua parameter tersensor tipe II (Studi kasus: Usia bayi dalam kandungan sampai lahir di Rumah Sakit PKU Muhammadiyah Wonogiri).

Borgan, Ø., Breslow, N. E., & Chatterjee, N. (Eds.). (1995). The analysis of censored survival data: Theory and applications. Springer.

Collett, D. (2003). Modelling survival data in medical research (2nd ed.). Chapman & Hall/CRC.

Fauzy, A. (n.d.). Kajian simulasi tingkat kepercayaan dari data uji hidup berdistribusi eksponensial dua parameter tersensor tipe II multiple sederhana. Prosiding, 564–565.

Hosmer, D. W., Lemeshow, S., & May, S. (2008). Applied survival analysis: Regression modeling of time-to-event data (2nd ed.). Wiley-Interscience.

Hutagaol, E. F. (2017). Peningkatan kualitas hidup pada penderita gagal ginjal kronik yang menjalani terapi hemodialisa melalui psychological intervention di unit hemodialisa RS Royal Prima Medan tahun 2016. Jumantik (Jurnal Ilmiah Penelitian Kesehatan), 2(1), 42–49.

Ilahi, I. N., Alwi, W., & Sauddin, A. (2024). Analisis survival terhadap pasien penderita penyakit gagal ginjal menggunakan metode Kaplan–Meier. Jurnal MSA (Matematika dan Statistika serta Aplikasinya), 12(1), 25–26.

Klein, J. P., & Moeschberger, M. L. (2003). Survival analysis: Techniques for censored and truncated data (2nd ed.). Springer.

Lawless, J. F. (2003). Statistical models and methods for lifetime data (2nd ed.). John Wiley & Sons.

Priandini, R. P., Handayani, L., & Rosyidah, R. (2023). Faktor-faktor yang berhubungan dengan kualitas hidup (quality of life) pasien gagal ginjal kronik yang menjalani hemodialisa. Jurnal Pendidikan Tambusai, 7(1), 3332–3340.

Salaam, A. F., Somayasa, W., & Djafar, M. K. (2023). Estimasi parameter distribusi gamma untuk sampel tersensor tipe I dan tipe II. Jurnal Matematika Komputasi dan Statistika, 3(1), 239–247.

Silvia, Y. (2019). Metode Bayes untuk distribusi Rayleigh pada data tahan hidup disensor tipe II (Disertasi doktoral). Universitas Andalas.

Simbolon, R. U. (2021). Pendugaan parameter distribusi Rayleigh menggunakan metode maximum likelihood dan metode Bayes pada data sensor tipe II.

Therneau, T. M., & Grambsch, P. M. (2000). Modeling survival data: Extending the Cox model. Springer.

Downloads

Published

2025-12-28