ANALISIS SURVIVAL DISTRIBUSI EKSPONENSIAL DUA PARAMETER PADA KASUS KAPAL TENGGELAM DI INDONESIA DENGAN SENSOR TIPE-II

Penulis

  • Muliana Susilawati Program Studi Statistika Universitas Hamzanwadi
  • Yulianti Hikmah Program Studi Statistika Universitas Hamzanwadi
  • Fauzun Azim Program Studi Statistika Universitas Hamzanwadi
  • Hanipar Mahyulis Sastriana Program Studi Statistika Universitas Hamzanwadi
  • Siti Hariati Hastuti Program Studi Statistika Universitas Hamzanwadi

DOI:

https://doi.org/10.29408/eksbar.v2i2.29186

Kata Kunci:

Exponential, Ship Sinking, Survival Analysis, Type-II censored

Abstrak

Survival analysis is a statistical method used to analyze data on the time until a certain event occurs. This study aims to model the time interval between ship sinking events in Indonesia and estimate the probability of such events occurring in the future. The method used is survival analysis with a two-parameter exponential distribution on type-II censored data. The data used is secondary data on the waiting time for ship sinking events in Indonesia during the period 2003–2018. The model suitability test using the Kolmogorov–Smirnov test shows that the data follows an exponential distribution. Parameter estimation was performed using the maximum likelihood method to obtain the location parameter (μ) and scale parameter (θ) values, as well as confidence intervals at the 95% and 99% confidence levels. The results showed that the estimated parameter points μ and θ were −2.58 and 36.61, respectively. The 95% confidence interval for the θ parameter was in the range of 20.66 to 62.55, while the 99% confidence interval was in the range of 17.93 to 77.60. Furthermore, the estimated survival function at 67 months showed that the probability of no ship sinking during that period was 12%.

Referensi

Chotimah, C. (2012). Estimasi Fungsi Tahan Hidup Data Berdistribusi Eksponensial Dengan Dua Parameter Tersensor Tipe II. Universitas Islam Indonesia.

Hadi, S. (2011). Estimasi Interval Bagi Fungsi Tahan Hidup Dari Data Berdistribusi Eksponensial Dua Parameter Tersensor Tipe Ii (Studi Kasus: Gol tercepat dalam Piala Dunia). Universitas Islam Indonesia.

Harlan, J. (2017). Analisis Survival (1st ed.). Gunadarma.

Kompas.com. (2018, June 23). 15 Peristiwa Kapal Tenggelam dari 2003 hingga 2018. Kompas.com. https://nasional.kompas.com/read/2018/06/23/15220601/15-peristiwa-kapal-tenggelam-dari-2003-hingga-2018?page=all

Maruddani, D. A. I., Tarno, Hoyyi, A., Rahmawati, R., & Wilandari, Y. (2021). ANALISIS SURVIVAL. UNDIP Press. https://eprints2.undip.ac.id/id/eprint/4484/1/C3%20Buku%20Survival%20Analysis%20Tahun%202021.pdf

Muhajir, M., & Palupi, Y. D. (2018). Survival Analysis of Child Patient Diarrhea Using Kaplan Meier Method and Rank Log Test. EKSAKTA: Journal of Sciences and Data Analysis, 74–84. https://doi.org/10.20885/eksakta.vol18.iss1.art8

Sari, D. R. (2011). Analisis Survival Untuk Data Tersensor Tipe II Menggunakan Model Distribusi Log-Logistik. Universitas Negeri Yogyakarta.

Sholihah, I., Iyah, S., & Amli, I. (2024). Interval Konfidensi Fungsi Tahan Hidup Untuk Satu Parameter Distribusieksponensial Dibawah Sensor Lengkap. Jurnal Multidisiplin Inovatif, 8(1), 232–236.

UU Republik Indonesia No.17 Tahun 2008 tentang Pelayaran, 1 (2008). https://jdih.esdm.go.id/common/dokumenexternal/UU%20No.%2017%20Tahun%202008%20Pelayaran.pdf

Diterbitkan

2025-12-28

Terbitan

Bagian

Articles