PERBANDINGAN SELF ORGANIZING MAP DAN K-AFFINITY PROPAGATION DALAM MENGELOMPOKAN KASUS STUNTING
DOI:
https://doi.org/10.29408/eksbar.v2i1.30462Kata Kunci:
Clustering, K-AP, SOM, StuntingAbstrak
Stunting is a physical failure in toddlers due to chronic malnutrition so that children are too short for their age. One of the provinces with the highest cases of stunting in Indonesia is East Nusa Tenggara (NTT) Province. Based on the results of the Indonesian Nutritional Status Survey (SSGI) on the prevalence of stunting in 2022, NTT province is in first place with a figure of 35.5%. One effort that can be made to minimize stunting rates and make human resources efficient is by focusing interventions on areas that have a significant impact on the high prevalence of stunting. This can be done by using clustering analysis. Clustering is the process of grouping data into several groups so that data in one group has a maximum level of similarity and data between groups has a minimum level of similarity. This study implemented clustering techniques using SOM and K-AP, because several variables in the data in this study contain outliers and both methods are not sensitive to outliers in the data so that they can produce optimal clusters even in data containing outliers. Then a comparison was made between the SOM and K-AP methods. The results of data analysis using the SOM and K-AP methods showed that the optimal method for grouping stunting cases based on districts/cities in NTT province in 2022 was the K-AP clustering method. This is based on the smallest variance value, namely 0.009469122.
Referensi
Agustini, M. (2017). Model-Based Clustering dengan Distribusi t Multivariat Menggunakan Kriteria Integrated Completed Likelihood dan Minimum Message Length. Institut Teknologi Sepuluh Nopember. Surabaya.
Akbar, P. (2016). Analisis Cluster Menggunakan Metode Self Organizing Maps (SOM) Untuk Pengelompokan Daerah Rawan Bencana Kebakaran Berdasarkan Jenis Sarana yang
Rusak di Provinsi DKI Jakarta Tahun 2013-2015. Laporan Kerja Praktek TidakDiterbitkan, Jurusan Statistika, Fakultas MIPA Universitas Islam Indonesia, Yogyakarta.
Asriny, N. I. (2021). Pengelompokkan Pekerja Paruh Waktu Dengan K-Affinity Propagation (K-Ap) Clustering Algorithm (Studi Kasus: Pekerja Paruh Waktu Menggunakan Internet Pada Pekerjaan Utama Di Provinsi Jawa Timur Tahun 2019).
Ghozali, M. I., & Sugiharto, W. H. (2017). Analisa Pola Belanja Menggunakan Algoritma Fp Growth, Self Organizing Map (Som) Dan K Medoids. Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 8(1), 317–326.
Hasugian, P. S. (2018). Penerapan Data Mining Untuk Klasifikasi Produk Menggunakan Algortima K-Means (Studi Kasus: Toko Usaha Maju Barabai). Jurnal Mantik Penusa, 2(2).
Rizky, P. S., Hirzi, R. H., & Hidayaturrohman, U. (2022). Perbandingan Metode LightGBM dan XGBoost dalam Menangani Data dengan Kelas Tidak Seimbang. J Statistika: Jurnal Ilmiah Teori Dan Aplikasi Statistika, 15(2), 228–236.
Rokhaidah, R. (2021). Pengaruh edukasi kesehatan dengan media audiovisual terhadap pengetahuan ibu tentang stunting pada balita di Posyandu Melati 1 Kelurahan Pisangan Timur, Jakarta Timur. Jurnal Keperawatan Widya Gantari Indonesia, 5(2), 58–64.
Setianingrum, S., Desmawati, L., & Yusuf, A. (2017). Peranan Kader Bina Keluarga Balita dalam Optimalisasi Tumbuh Kembang Fisik Motorik Anak Usia Dini. Journal of Nonformal Education and Community Empowerment, 137–145.
Setiyawati, M. E., Ardhiyanti, L. P., Hamid, E. N., Muliarta, N. A. T., & Raihanah, Y. J. (2024). Studi Literatur: Keadaan Dan Penanganan Stunting Di Indonesia. Ikra-Ith Humaniora: Jurnal Sosial Dan Humaniora, 8(2), 179–186.
Sutraningsih, W., Marlindawani, J., & Silitonga, E. (2021). Implementasi Strategi Pelaksanaan Pencegahan Stunting di Kabupaten Aceh Singkil Tahun 2019. Journal of Healthcare Technology and Medicine, 7(1), 49–67.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Hasmiati, Ristu Haiban Hirzi, Chandrawati, Wiwit Pura Nurmayanti, Muhammad Gazali, Hanipar Mahyulis Sastriana

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.