Penerapan Pengelompokkan Produktivitas Hasil Pertanian Menggunakan Algoritma K-Means

Authors

  • Putri Trisnawati STMIK IKMI CIREBON
  • Ade Irma Purnamasari STMIK IKMI Cirebon

DOI:

https://doi.org/10.29408/jit.v6i2.10198

Keywords:

Data Mining, K-means, Productivity of Agricultural Products

Abstract

Since ancient times, Indonesia has always been rich in agricultural products such as rice, soybeans, corn, peanuts, cassava, and sweet potatoes. In addition, there are also products from agriculture that are referred to as trade crop agricultural products, namely tea, coffee, coconut, quinine, cloves, sugar cane, rubber, and others. The agricultural sector in 2021 will grow by 1.84% and contribute 13.28% to the national economy. Then in 2022, the agricultural sector will show consistency with a positive growth of 1.37% and contribute 12.98% to the national economy. Then it is necessary to group the productivity of agricultural products using the k-means clustering method to group data on the highest and lowest yield types according to the District in Bojonegoro so that the types of agricultural products that are most productive and less productive can be identified. The method used in this study is K-Means cluster analysis by first determining the number of groups to be formed. In this study, the data used is secondary data on agricultural products originating from One Bojonegoro Data. The food crops in question are rice, shallots, soybeans, large chilies, corn, and so on. From the results of grouping agricultural products based on the year of production, the best types of crops will be known, and which districts will produce the most productive food crops so that the distribution of food crops in Bojonegoro District can be controlled. Productivity grouping of agricultural products can be used as a strategy to increase agricultural yields.

References

T. Tendean dan W. Purba, “Analisis Cluster Provinsi Indonesia Berdasarkan Produksi Bahan Pangan Menggunakan Algoritma K-Means,” Jurnal Sains dan Teknologi), vol. 1, no. 2, hlm. 5–11, 2020.

A. M. Khariyani dan E. Fauziyari, “Clustering dengan Metode K-Means Berdasarkan Potensi Pertanian di Jawa Tengah,” 2022.

B. Poerwanto dan R. Y. Fa’rifah, “Algoritma K-Means Dalam Mengelompokkan Kecamatan Di Tana Luwu Berdasarkan Produktivitas Hasil Pertanian,” 2019.

N. M. Manaor Hara Pardede Akim, “Penerapan Data Mining Pada Daerah Potensi Hasil Pertanian Yang Produktif Menggunakan Metode Algoritma K-Means Di Langkat,” Jurnal Informatika Kaputama, vol. 6, no. 3, 2022.

P. Alkhairi dan A. P. Windarto, Penerapan K-Means Cluster Pada Daerah Potensi Pertanian Karet Produktif di Sumatera Utara. 2019. [Daring]. Tersedia pada: https://seminar-id.com/semnas-sainteks2019.html

B. Ginting dan F. Riandari, “Implementasi Metode K-Means Clustering Dalam Pengelompokan Bibit Tanaman Kopi Arabika,” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 3, no. 2, 2020.

Sri Marliska Hutabarat dan Anita Sindar, “Data Mining Penjualan Suku Cadang Sepeda Motor Menggunakan Algoritma K-Means,” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 2, no. 2, 2019.

D. Ariyanto, “Data Mining Menggunakan Algoritma K-Means untuk Klasifikasi Penyakit Infeksi Saluran Pernafasan Akut,” Jurnal Sistim Informasi dan Teknologi, hlm. 13–18, Feb 2022, doi: 10.37034/jsisfotek.v4i1.117.

G. Gustientiedina, M. H. Adiya, dan Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 5, no. 1, hlm. 17–24, Apr 2019, doi: 10.25077/teknosi.v5i1.2019.17-24.

D. Amelia, T. N. Padilah, dan A. Jamaludin, “Optimasi Algoritma K-Means Menggunakan Metode Elbow dalam Pengelompokan Penyakit Demam Berdarah Dengue (DBD) di Jawa Barat,” Jurnal Ilmiah Wahana Pendidikan, vol. 8, no. 11, hlm. 207–215, 2022, doi: 10.5281/zenodo.6831380.

Darmansah dan Ni Wayan Wardani, “Analisa Penyebab Kerusakan Tanaman Cabai Menggunakan Metode K-Means,” Jurnal Teknik Informatika dan Sistem Informasi, hlm. 126–134, 2020.

A. Rohmatullah, “Klasterisasi Data Pertanian Di Kabupaten Lamongan Menggunakan Algoritma K-Means Dan Fuzzy C Means,” Jurnal Ilmiah Teknosains, no. 2, hlm. 1, 2019.

Zulfa Nabila, A. Rahman Isnain, dan Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” Jurnal Teknologi dan Sistem Informasi (JTSI), vol. 2, no. 2, hlm. 100, 2021, [Daring]. Tersedia pada: http://jim.teknokrat.ac.id/index.php/JTSI

Y. Ratna Sari, A. Sudewa, D. Ayu Lestari, dan T. Ika Jaya, “Penerapan Algoritma K-Means Untuk Clustering Data Kemiskinan Provinsi Banten Menggunakan RapidMiner,” 2020.

Y. F. S. Y. Damanik, S. Sumarno, I. Gunawan, D. Hartama, dan I. O. Kirana, “Penerapan Data Mining Untuk Pengelompokan Penyebaran Covid-19 Di Sumatera Utara Menggunakan Algoritma K-Means,” Jurnal Ilmu Komputer dan Informatika, vol. 1, no. 2, Nov 2021, doi: 10.54082/jiki.13

Downloads

Published

20-07-2023

How to Cite

Trisnawati, P., & Purnamasari, A. I. (2023). Penerapan Pengelompokkan Produktivitas Hasil Pertanian Menggunakan Algoritma K-Means. Infotek: Jurnal Informatika Dan Teknologi, 6(2), 249–257. https://doi.org/10.29408/jit.v6i2.10198

Similar Articles

<< < 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.