Prototipe Sistem Rekomendasi Film Indonesia Menggunakan Pendekatan Content Based Filtering dan Metode Vector Space Model

Authors

  • Daniel Theo Santoso Universitas Duta Bangsa
  • Vihi Atina Universitas Duta Bangsa
  • Dwi Hartanti Universitas Duta Bangsa

DOI:

https://doi.org/10.29408/jit.v7i2.26083

Keywords:

Recommendation System, Movie, Content Based Filtering, Vector Space Model

Abstract

Film represents a combination of narrative and cinematographic aspects in an audio-visual form. Films also provide an engaging visual, auditory, and emotional experience. The film industry in Indonesia has shown significant growth. In 2015, cinema audiences numbered 16.2 million, increasing to 51.2 million in 2019. The COVID-19 pandemic caused a drastic decline in the number of viewers, with only 4.5 million in 2021. However, the industry quickly recovered, reaching 54.07 million viewers in 2022 and 55 million in 2023, and is projected to reach 60 million in 2024. With the increasing availability of films and streaming platforms, finding movies that match user preferences often becomes a challenge. This study proposes a film recommendation system using the Content-Based Filtering method and the Vector Space Model to help users more easily find movies that match their preferences. Content-Based Filtering recommends films based on content similarity, while the Vector Space Model measures content similarity using metrics such as cosine similarity or euclidean distance. Based on experiments using 20 sample films, the results show that the designed system can provide accurate and precise movie recommendations based on keywords provided by users. The film "Pengabdi Setan 2: Communion" has the highest similarity score of 0.3018, followed by "Nana," "Menjelang Magrib," "Jailangkung: Sandekala," and "Qorin," with similarity scores of 0.0865, 0.0138, 0.0136, and 0.0125, respectively

References

H. Pratista, Memahami Film. Yogyakarta: Homerian Pustaka, 2008.

“Indonesia.go.id - Tren Positif Film Indonesia,” Indonesia.go.id. Diakses: 2 April 2024. [Daring]. Tersedia pada: https://indonesia.go.id/ragam/seni/sosial/tren-positif-film-indonesia

W. M. C. Nababan, “Tahun 2023, Penonton Film Indonesia Ditargetkan Pecahkan Rekor Baru - Kompas.id,” Kompas. Diakses: 2 April 2024. [Daring]. Tersedia pada: https://www.kompas.id/baca/humaniora/2023/01/04/tahun-2023-penonton-film-indonesia-ditargetkan-pecahkan-rekor-baru

Y. D. R. Pusparisa, “Industri Film Indonesia Akan Makin Atraktif pada 2024 - Kompas.id,” Kompas. Diakses: 2 April 2024. [Daring]. Tersedia pada: https://www.kompas.id/baca/ekonomi/2024/02/06/triliunan-rupiah-prediksi-perputaran-ekonomi-industri-perfilman-indonesia-pascapandemi

“Streaming is the future of TV, but the abundance of platform choice is overwhelming for viewers | Nielsen,” Nielsen. Diakses: 2 April 2024. [Daring]. Tersedia pada: https://www.nielsen.com/insights/2022/streaming-is-the-future-of-tv-but-abundance-of-platform-choice-is-overwhelming-for-viewers/

Y. Pusparisa, “Platform Menonton Film Indonesia Secara Online,” databoks. Diakses: 2 April 2024. [Daring]. Tersedia pada: https://databoks.katadata.co.id/datapublish/2021/03/30/platform-menonton-film-indonesia-secara-online

H. Mutiasari, T. W. Purboyo, dan R. A. Nugrahaeni, “Sistem Rekomendasi Film Menggunakan Metode K-Means Clustering,” e-Proceeding of Engineering, vol. 8, no. 5, 2021.

D. Nugraha, T. W. Purboyo, dan R. A. Nugrahaeni, “Sistem Rekomendasi Film Menggunakan Metode User Based Collaborative Filtering,” e-Proceeding of Engineering, vol. 8, no. 5, 2021.

A. A. Huda, R. Fajarudin, dan A. Hadinegoro, “Sistem Rekomendasi Content-based Filtering Menggunakan TF-IDF Vector Similarity Untuk Rekomendasi Artikel Berita,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 3, Des 2022, doi: 10.47065/bits.v4i3.2511.

Joni, Andy, dan K. Wibowo, “Perancangan Website Rekomendasi Film Dengan Menggunakan Metode User Based Collaborative Filtering,” Jurnal Ilmiah Teknik Informatika, vol. 1, no. 2, hlm. 37–43, Okt 2021, [Daring]. Tersedia pada: http://ojs.fikom-methodist.net/index.php/

E. Ryana Agustian, Munir, dan E. Prasetyo Nugroho, “Sistem Rekomendasi Film Menggunakan Metode Collaborative Filtering dan K-Nearest Neighbors,” Jurnal Aplikasi dan Teori Ilmu Komputer, vol. 3, no. 1, Mar 2020, Diakses: 10 Mei 2024. [Daring]. Tersedia pada: https://ejournal.upi.edu/index.php/JATIKOM

V. Atina dan D. Hartanti, “KNOWLEDGE BASED RECOMMENDATION MODELING FOR CLOTHING PRODUCT SELECTION RECOMMENDATION SYSTEM,” Jurnal Teknik Informatika (Jutif), vol. 3, no. 5, hlm. 1407–1413, Okt 2022, doi: 10.20884/1.jutif.2022.3.5.584.

D. Roy dan M. Dutta, “A systematic review and research perspective on recommender systems,” J Big Data, vol. 9, no. 1, Des 2022, doi: 10.1186/s40537-022-00592-5.

D. A. Putri, D. Pramesti, D. I, dan W. Santiyasa, “Penerapan Metode Content-Based Filtering dalam Sistem Rekomendasi Video Game,” JNATIA, vol. 1, no. 1, 2022.

R. Huang, “Improved content recommendation algorithm integrating semantic information,” J Big Data, vol. 10, no. 1, Des 2023, doi: 10.1186/s40537-023-00776-7.

R. W. Pratiwi dan Y. S. Nugroho, “Prediksi Rating Film Menggunakan Metode Naïve Bayes,” Duta.com: Jurnal Ilmiah Teknologi Informasi dan Komunikasi, vol. 12, no. 1, hlm. 91–108, 2017, [Daring]. Tersedia pada: https://www.kaggle.com

S. Rosetya Wardhana dan R. Kembang Hapsari, “Sistem Rekomendasi Film dengan Menggunakan Pendekatan Collaborative Filtering Berdasarkan Class,” Prosiding Seminar Implementasi Teknologi Informasi dan Komunikasi, vol. 2, no. 1, 2023, doi: 10.31284/p.semtik.2023-1.4153.

A. Sudianto, L. K. Wijaya, J. Jumawal, and M. Mahpuz, “Penerapan Aplikasi Warung Media Berbasis Android Guna Meningkatkan Promosi dan Penjualan”, INFOTEK, vol. 7, no. 1, pp. 267–275, Jan. 2024.

A. Sudianto, H. Sunaryo, S. Suhartini, H. Ahmadi, H. Harianto, and L. Samsu, “Design And Build Of Web-Based Sasak Encyclopedia As An Effort In Preserving Sasak Language,” Aug. 2022. Accessed: Jul. 18, 2023. [Online]. Available: https://iocscience.org/ejournal/index.php/mantik/article/view/2631

Downloads

Published

24-07-2024

How to Cite

Theo Santoso, D., Atina, V., & Hartanti, D. (2024). Prototipe Sistem Rekomendasi Film Indonesia Menggunakan Pendekatan Content Based Filtering dan Metode Vector Space Model. Infotek: Jurnal Informatika Dan Teknologi, 7(2), 444–455. https://doi.org/10.29408/jit.v7i2.26083

Most read articles by the same author(s)

Similar Articles

<< < 16 17 18 19 20 21 22 23 > >> 

You may also start an advanced similarity search for this article.