Identifikasi Penyakit Daun Durian Menggunakan Penerapan Algoritma Residual Network (RESNET-50)

Authors

  • Arga Satria Ramadhan Universitas Muhammadiyah
  • Yunianita Rahmawati
  • Ika ratna Indra Astutik
  • Sumarno Universitas Muhammadiyah Sidoarjo

DOI:

https://doi.org/10.29408/jit.v8i2.30293

Keywords:

durian leaf, disease detection, image classification, Resnet-50, Roboflow

Abstract

Durian is one of Indonesia’s leading horticultural commodities, but its productivity can decline due to leaf diseases that are difficult for farmers to identify visually. This study aims to develop an automated durian leaf disease classification system using a deep learning algorithm based on the ResNet-50 architecture. The dataset consists of 420 durian leaf images classified into four categories: Algal Leaf Spot, Leaf Blight, Leaf Spot, and No Disease, collected from the Roboflow platform. Preprocessing steps included annotation, augmentation, and resizing the images to 240x240 pixels.The model was trained using TensorFlow with pretrained ImageNet weights. Three data split scenarios (70:20:10, 75:15:10, and 80:10:10) were applied using both binary and multiclass classification approaches. Model performance was evaluated using confusion matrix and metrics such as accuracy, precision, recall, and F1-score. The best binary classification result achieved 99.8% accuracy and 99.9% F1-score, while the best multiclass result achieved 99.6% accuracy and 96.9% macro F1-score. These results demonstrate that ResNet-50 is effective in accurately detecting durian leaf diseases and can be implemented in mobile applications to assist farmers in early diagnosis and improving crop productivity.

References

[1] E. Yuniastuti, N. Nandariyah, and S. R. Bukka, “Karakterisasi Durian (Durio zibenthinus) Ngrambe di Jawa Timur, Indonesia,” Caraka Tani: Journal of Sustainable Agriculture, vol. 33, no. 2, p. 136, Sep. 2018, doi: 10.20961/carakatani.v33i2.19610.

[2] N. Najira, E. Selviyanti, Y. B. Tobing, K. Kasmawati, R. Sianturi, and A. B. Suwardi, “Diversitas Kultivar tanaman Durian (Durio zubethinus Murr.) Ditinjau dari Karakter Morfologi”, doi: 10.29303/jbt.v20i2.1871.

[3] Napitulu and Rodame Monitorir, “Bertanam Durian Unggul,” 2015.

[4] Taslim, S. Saon, K. Mahamad, M.Muladi, and W. N. Hidayat, “Plant leaf identification system using convolutional neural network,” Eng. Informatics, vol. 10, Dec. 2021, doi: 10.11591/eei.v10i6.2332.

[5] B. Febriana, “Identifikasi Penyakit Daun Apel Menggunakan Resnet 50 Dilated Convolution Neural Network,” Inst. Teknol. Nas. Bandung, no. 465, pp. 106–111, Accessed: May 10, 2025.

[6] Jia-Rong X, Pei-Che C, Hung-Yi W, Quoc-Hung P, Yeh J.-L A, and M.-K. Hou, “Detection of Strawberry Diseases Using a Convolutional Neural Network,” pp. 1–14, 2020.

[7] C. Nur Sahera, Y. Rahmawati, R. Dijaya, and S. dan Teknologi, “Optimasi Penerapan Algoritma Convolution Neural Network Dalam Klasifikasi Tingkat Kesegaran Daging Sapi,” Jurnal TEKINKOM, vol. 7, no. 1, 2024, doi : 10.37600/tekinkom.v7i1.1122.

[8] Chollet and Francois, “Deep Learning with Python,” Shelter Island: Manning Publications Co.

[9] Sena and Samuel, “Pengenalan Deep Learning Part 7 : Convolutional Neural Network (CNN),” 2017, Accessed: May 10,2025. [Online]. Available: https://medium.com/@samuelsena/pengenalan-deep-learning-part-7- convolutionalneural-network-cnn-b003b477dc94

[10] Pratama Putra and D. Alamsyah, “Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network,” Jurnal Algoritme, vol. 2, no. 2, pp. 102–112, 2022, [Online]. Available: https://www.kaggle.com/qramkrishna/corn-leaf-infection-dataset

[11] He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[12] Egga Naufal Daffa Tanadi, Dhian Satria Yudha Kartika, and Abdul Rezha Efrat Najaf, “Sistem Pendeteksi Penyakit Kanker Kulit Menggunakan Convolutional Neural Network Arsitektur YOLOv8 Berbasis Website,” Repeater Publ. Tek. Inform. dan Jar, vol. 2, no. 3, pp. 166–177, 2024, doi: 10.62951/repeater.v2i3.124.

[13] L. Satya, M. R. D. Septian, M. W. Sarjono, M. Cahyanti, and E. R. Swedia, “Sistem Pendeteksi Plat Nomor Polisi Kendaraan Dengan Arsitektur Yolov8,” Sebatik, vol. 27, no. 2, pp. 753–761, 2023, doi: 10.46984/sebatik.v27i2.2374.

[14] R. Arthana, “Mengenal Accuracy, Precision, Recall, dan Specificity Serta yang Diprioritaskan Dalam Machine Learning,” Apr. 2019, Accessed: May 10, 2025.

[15] Leung, “Micro, Macro & Weighted Averages of F1 Score, Clearly Explained,” Jan. 2022, Accessed: May 10, 2025.

[16] A. Sudianto, B. A. C. Permana, Muhammad Wasil, and Harianto, “Penerapan Sistem Payment Gateway Pada E-Commerce Sebagai Upaya Peningkatan Penjualan”, INFOTEK, vol. 8, no. 1, pp. 271–279, Jan. 2025. doi: 10.29408/jit.v8i1.28323

Downloads

Published

15-07-2025

How to Cite

Ramadhan, A. S., Rahmawati, Y., Indra Astutik, I. ratna, & Sumarno. (2025). Identifikasi Penyakit Daun Durian Menggunakan Penerapan Algoritma Residual Network (RESNET-50). Infotek: Jurnal Informatika Dan Teknologi, 8(2), 435–446. https://doi.org/10.29408/jit.v8i2.30293

Most read articles by the same author(s)