Analisis Sentimen Ulasan Pengguna Alikasi Traveloka Pada Google Play Store Menggunakan Algoritma Naive Bayes

Authors

  • Muhammad Daffa Ikhsan universitas buana perjuangan karawang
  • Baenil Huda Universitas Buana Perjuangan
  • Agustia Hananto Universitas Buana Perjuangan
  • Fitria Nurapriani Universitas Buana Perjuangan

DOI:

https://doi.org/10.29408/jit.v8i2.30444

Keywords:

sentiment analysis, Multinomial Naïve Bayes, Traveloka, Google Play Store, text classification

Abstract

The advancement of the digital era has driven increased usage of online reservation applications, including Traveloka. The abundance of user feedback available on the Google Play Store platform has the potential to become a valuable database for development teams in improving service quality. However, the characteristics of unstructured and spontaneous reviews pose challenges in conventional data processing.This research aims to explore sentiment in Traveloka application user comments using the Multinomial Naïve Bayes algorithm. The dataset used consists of 1,500 review samples obtained through web scraping techniques from the Google Play Store. The research methodology includes several data preprocessing stages, including data cleaning, case normalization, word tokenization (tokenizing), stopword removal, and word stemming to their base forms (stemming). Subsequent processes include data categorization, feature extraction using the Term Frequency–Inverse Document Frequency (TF-IDF) approach, and building a classification model with the Multinomial Naïve Bayes algorithm.Test results show that the model is capable of classifying sentiment with an accuracy rate of 79%. The model demonstrates high recall values in identifying negative reviews (0.97), but the recall value for positive reviews remains limited (0.64). This indicates that the model has higher sensitivity to negative expressions. From a total of 1,500 review data, there were 461 positive reviews and 543 negative reviews that were successfully categorized clearly.The findings in this study prove that the implementation of the Multinomial Naïve Bayes algorithm is quite efficient in sentiment classification of user reviews, and is capable of providing strategic insights that can be utilized by development teams to improve application service quality

References

[1] H. Indrawan, B. Irawan, and T. Suprapti, “Klasifikasi Ulasan Pengguna Aplikasi Access By Kai Berbasis Aspek Dengan Algoritma Naïve Bayes Dan Svm,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3541–3548, 2024, doi: 10.36040/jati.v7i6.8234.

[2] I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.

[3] S. N. Salsabila, B. N. Sari, and R. Mayasari, “Klasifikasi Ulasan Pengguna Aplikasi Discord Menggunakan Metode Information Gain Dan Naïve Bayes Classifier,” INFOTECH J., vol. 9, no. 2, pp. 383–392, 2023, doi: 10.31949/infotech.v9i2.6277.

[4] B. Faradilla, “Analisis Sentimen Terhadap Aplikasi Traveloka Menggunakan Metode Learning Vector Quantization (Lvq) Berdasarkan Ulasan Di Google Play Store,” 2020, [Online]. Available: http://repository.uin-suska.ac.id/29632/%0Ahttp://repository.uin-suska.ac.id/29632/1/File lengkap sampai lampiran kecuali hasil penelitian.pdf

[5] S. A. R. Rizaldi, S. Alam, and I. Kurniawan, “Analisis Sentimen Pengguna Aplikasi JMO (Jamsostek Mobile) Pada Google Play Store Menggunakan Metode Naive Bayes,” STORAGE J. Ilm. Tek. dan Ilmu Komput., vol. 2, no. 3, pp. 109–117, 2023, doi: 10.55123/storage.v2i3.2334.

[6] Kurniawan, A. Lia Hananto, S. Shofia Hilabi, A. Hananto, B. Priyatna, and A. Yuniar Rahman, “Perbandingan Algoritma Naive Bayes Dan SVM Dalam Sentimen Analisis Marketplace Pada Twitter,” J. Tek. Inform. dan Sist. Inf., vol. 10, no. 1, pp. 731–740, 2023, [Online]. Available: http://jurnal.mdp.ac.id

[7] M. K. Khoirul Insan, U. Hayati, and O. Nurdiawan, “Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di Google Play Menggunakan Algoritma Naive Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 478–483, 2023, doi: 10.36040/jati.v7i1.6373.

[8] V. No, Y. K. Putra, M. Adrian, J. Hidayat, and V. No, “Infotek : Jurnal Informatika dan Teknologi Penerapan Algoritma Naïve Bayes Untuk Analisis Pengaruh Faktor Pendidikan Terhadap Peningkatan Kesehatan Masyarakat Pembangunan nasional adalah pembangunan manusia seutuhnya serta pembangunan seluruh aspek kehidu,” vol. 7, no. 2, 2024.

[9] V. No, “Prediksi Tingkat Kesehatan Lingkungan Masyarakat Dalam Program Sustainable Development Goals Menggunakan Algoritma Naive Bayes .” vol. 6, no. 2, pp. 431–442, 2023.

[10] T. Tukino and B. Huda, “Penerapan Algoritma K-Means Untuk Mendukung Keputusan Dalam Pemilihan Tema Tugas Akhir Pada Prodi Sistem Informasi Universitas Buana Perjuangan Karawang.,” Techno Xplore J. Ilmu Komput. dan Teknol. Inf., vol. 4, no. 1, pp. 1–10, 2019, doi: 10.36805/technoxplore.v4i1.542.

[11] H. Hidayatullah, P. Purwantoro, and Y. Umaidah, “Penerapan Naïve Bayes Dengan Optimasi Information Gain Dan Smote Untuk Analisis Sentimen Pengguna Aplikasi Chatgpt,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 3, pp. 1546–1553, 2023, doi: 10.36040/jati.v7i3.6887.

[12] Hananto, Muhamad Mammun, and Nurhayati, “Implementation of the Futsal Field Ordering Platform using the UCD Method,” Buana Inf. Technol. Comput. Sci. (BIT CS), vol. 1, no. 1, pp. 19–22, 2020, doi: 10.36805/bit-cs.v1i1.678.

[13] Huda et al., “Implementation of UI/UX the Design Thinking Approach Method in Inventory Information System,” E3S Web Conf., vol. 448, 2023, doi: 10.1051/e3sconf/202344802005.

[14] Huda, A. S. Amin, F. Nurapriani, and A. Damuri, “Aplikasi Monitoring Perkembangan Edukasi Anak Usia Dini Berbasis Web,” J. Inform. Utama, vol. 1, no. 1, pp. 1–10, 2023, doi: 10.55903/jitu.v1i1.70.

[15] N. Kastiawan, B. Huda, E. Novalia, and F. Nurapriani, “Klasterisasi Data Obat dengan Algoritma K-Means (Kasus pada UPTD Puskesmas Curug),” J. Sains Komput. Inform. (J-SAKTI, vol. 8, no. 1, pp. 120–130, 2024.

[16] B. Huda, “Sistem Informasi Data Penduduk Berbasis Android Dan Web Monitoring Studi Kasus Pemerintah Kota Karawang (Penelitian dilakukan di Kab. Karawang),” Buana Ilmu, vol. 3, no. 1, pp. 62–69, 2018, doi: 10.36805/bi.v3i1.456.

[17] B. Huda, S. Nurhabibah, and R. Prayoga, “Aplikasi Digital Marketing Untuk Manajemen Usaha Dalam Pengembangan Umkm,” Pros. Konf. Nas. Penelit. Dan Pengabdi. Univ. Buana Perjuangan Karawang, vol. 2, no. 1, pp. 1172–1179, 2022, [Online]. Available: https://journal.ubpkarawang.ac.id/index.php/ProsidingKNPP/article/view/2561

[18] A. Sudianto, B. A. C. Permana, Muhammad Wasil, and Harianto, “Penerapan Sistem Payment Gateway Pada E-Commerce Sebagai Upaya Peningkatan Penjualan”, INFOTEK, vol. 8, no. 1, pp. 271–279, Jan. 2025.

Downloads

Published

15-07-2025

How to Cite

Ikhsan, M. D., Huda, B., Hananto, A., & Nurapriani, F. (2025). Analisis Sentimen Ulasan Pengguna Alikasi Traveloka Pada Google Play Store Menggunakan Algoritma Naive Bayes. Infotek: Jurnal Informatika Dan Teknologi, 8(2), 367–377. https://doi.org/10.29408/jit.v8i2.30444

Similar Articles

<< < 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.