Komparasi Naive Bayes dan Gradient Boosting Machine untuk Klasifikasi Sentimen Publik terkait Kenaikan Harga Pertalite di Media Sosial Twitter

Authors

  • Arnila Sandi Universitas Hamzanwadi
  • Yahya Universitas Hamzanwadi

DOI:

https://doi.org/10.29408/jit.v8i2.31102

Keywords:

Twitter, Sentiment analysis, GBM, classification, naive bayes, pertalite, twitter

Abstract

The increase in the price of pertalite fuel in Indonesia has caused various reactions from the public, which are widely expressed through social media such as twitter. Fuel oil (BBM) is one of the basic needs that is very important for the Indonesian people because it plays a major role in supporting various daily activities. BBM is used not only as fuel for motor vehicles, but also as a source of energy for various industrial equipment. This study aims to classify public sentiment towards the issue using the naive bayes algorithm and Gradient Boosting Machine (GBM) as a classification method. The data used in this study were obtained from the Kaggle platform, which contains a collection of tweets related to the issue of fuel prices, especially pertalite. The analysis process begins with text preprocessing, such as data cleaning, tokenization, stopword removal, and stemming. The data already has a sentiment label (positive, negative, neutral) and is divided for model training and testing. The evaluation results show that the GBM algorithm is able to classify sentiment with an accuracy rate of 60% while the Naive Bayes algorithm has an accuracy rate of 90%. These results prove that naive bayes has a higher level of accuracy than the GBM algorithm, so it can be used in processing text data from social media to understand public opinion on government policies, especially regarding fuel price increases.

References

[1] N. J. Hutagalung, Tony, “Analisis Sentimen Pada Opini Kenaikan Harga Bahan Bakar Minyak Pada Media Sosial Twitter,” J. Sist. Inf. DAN Tek. Komput., vol. 8, no. 2, pp. 280–284, 2023.

[2] Tiara Danirmala and Y. S. Nugroho, “Analisis Sentimen Terhadap Topik Kenaikan Harga Bahan Bakar Minyak (BBM) pada Media Sosial Twitter,” Indones. J. Comput. Sci., vol. 12, no. 3, pp. 1258–1268, 2023, doi: 10.33022/ijcs.v12i3.3199.

[3] B. Darmawan, A. Dwi Laksito, M. Resa, A. Yudianto, and A. Sidauruk, “Krea-TIF: Jurnal Teknik Informatika Analisis Perbandingan Ekstraksi Fitur Teks pada Sentimen Analisis Kenaikan Harga BBM,” J. Mhs. Inform., vol. 11, no. 1, pp. 53–63, 2023, doi: 10.32832/krea-tif.v11i1.13819.

[4] R. Harun, R. Ishak, and S. Panna, “Analisis Sentimen Opini Publik Pengguna Twitter Terhadap Kenaikan Harga BBM Menggunakan Algoritma Naïve Bayes,” J. Ilm. Ilmu Komput. Banthayo Lo Komput., vol. 2, no. 1, pp. 26–33, 2023, doi: 10.37195/balok.v2i1.414.

[5] Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” J. KomtekInfo, vol. 10, pp. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.

[6] L. Sari, A. Romadloni, R. Lityaningrum, and H. D. Hastuti, “Implementation of LightGBM and Random Forest in Potential Customer Classification,” TIERS Inf. Technol. J., vol. 4, no. 1, pp. 43–55, 2023, doi: 10.38043/tiers.v4i1.4355.

[7] N. Anggraini, S. J. Putra, L. K. Wardhani, F. D. U. Arif, N. Hakiem, and I. M. Shofi, “A Comparative Analysis of Random Forest, XGBoost, and LightGBM Algorithms for Emotion Classification in Reddit Comments,” J. Tek. Inform., vol. 17, no. 1, pp. 88–97, 2024, doi: 10.15408/jti.v17i1.38651.

[8] I. Zahy, A. Illah, W. Syaifullah, J. Sapu, and A. T. Damaliana, “Implementasi Metode Klasifikasi LightGBM dan Analisis Survival dalam Memprediksi Pelanggan Churn,” vol. 8, no. 1, pp. 43–53, 2024.

[9] P. S. Zalukhu, T. Handhayani, and M. Sitorus, “Analisis Sentimen Terhadap Kenaikan Bbm Di Indonesia Pada Media Sosial Twitter Menggunakan Metode Naïve Bayes,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 8, no. 1, pp. 65–69, 2023, doi: 10.51876/simtek.v8i1.177.

[10] J. Chaidir and P. Herwanto, “Sentiment Analysis Of Youtube on The Vina Cirebon Case,” vol. 1, no. 2, pp. 98–106, 2024.

[11] M. Wasil, “Infotek : Jurnal Informatika dan Teknologi Analisis Persepsi Masyarakat Terhadap Kinerja Aparatur Desa Dalam Meningkatkan Pelayanan Publik Di Desa Lenek Lauk Menggunakan Metode Naive Bayes Pelayanan publik adalah kegiatan atau rangkaian kegiatan dalam ran,” Infotek J. Inform. dan Teknol., vol. 3, no. 2, pp. 140–146, 2020.

[12] M. Ridho Handoko, “Sistem Pakar Diagnosa Penyakit Selama Kehamilan Menggunakan Metode Naive Bayes Berbasis Web,” J. Teknol. dan Sist. Inf., vol. 2, no. 1, pp. 50–58, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI

[13] M. Saiful1*, Syamsuddin2, and Moh. Farid Wajdi3, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Predikat Ketuntasan Belajar Siswa Pasca Pandemi Covid 19,” Infotek J. Inform. dan Teknol., vol. 4, no. 1, pp. 96–104, 2021.

[14] J. Sihombing, “Klasifikasi Data Antroprometri Individu Menggunakan Algoritma Naïve Bayes Classifier,” BIOS J. Teknol. Inf. dan Rekayasa Komput., vol. 2, no. 1, pp. 1–10, 2021, doi: 10.37148/bios.v2i1.15.

[15] A. M. Nur, N. Nurhidayati, and I. Fathurrahman, “Penerapan Metode Naïve Bayes Untuk Penentuan Penerima Beasiswa Program Indonesia Pintar (PIP).,” Infotek J. Inform. dan Teknol., vol. 7, no. 1, pp. 93–102, 2024, doi: 10.29408/jit.v7i1.23995.

[16] Y. Yahya and H. Bahtiar, “Pengaruh Pertumbuhan Ekonomi Terhadap Tingkat Kesejahteraan Masyarakat Kecamatan Selong Kabupaten Lombok Timur – Nusa Tenggara Barat Menggunakan Algoritma Naive Bayes,” Infotek J. Inform. dan Teknol., vol. 4, no. 1, pp. 20–28, 2021, doi: 10.29408/jit.v4i1.2981.

[17] Rina Noviana and Isram Rasal, “Penerapan Algoritma Naive Bayes Dan Svm Untuk Analisis Sentimen Boy Band Bts Pada Media Sosial Twitter,” J. Tek. dan Sci., vol. 2, no. 2, pp. 51–60, 2023, doi: 10.56127/jts.v2i2.791.

Downloads

Published

15-07-2025

How to Cite

Sandi, A., & Yahya. (2025). Komparasi Naive Bayes dan Gradient Boosting Machine untuk Klasifikasi Sentimen Publik terkait Kenaikan Harga Pertalite di Media Sosial Twitter. Infotek: Jurnal Informatika Dan Teknologi, 8(2), 447–457. https://doi.org/10.29408/jit.v8i2.31102

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.