Analisa Komparatif Klasifikasi Citra Sayuran dengan Algoritma Support Vector Machine dan Convolutional Neural Network

Authors

DOI:

https://doi.org/10.29408/jit.v9i1.32791

Keywords:

Convolutional Neural Network(CNN), Deep Learning, Image Classification, Machine Learning, SVM (Support Vector Machine)

Abstract

This study presents a comparative analysis between the Support Vector Machine (SVM) algorithm, representing machine learning techniques, and the Convolutional Neural Network (CNN) algorithm, representing deep learning techniques, for vegetable image classification. The research adopts a quantitative approach by conducting multiple experimental schemes involving various SVM feature extraction methods and CNN architectures. The objective of this study is to evaluate and compare the performance, effectiveness, and computational efficiency of SVM and CNN algorithms. The dataset used in this study is a publicly available vegetable image dataset obtained from the Kaggle platform, consisting of 21.000 images categorized into 15 classes. The experimental results indicate that CNN significantly outperforms SVM in terms of accuracy, precision, recall, and F1-score. Moreover, CNN demonstrates superior generalization capability in predicting unseen image data. The best performance of the SVM algorithm was achieved using the Color Histogram feature extraction method, yielding an accuracy of 93%. In contrast, CNN models employing pre-trained architectures achieved higher accuracy, with VGG16 and MobileNetV2 obtaining accuracies of 98% and 100%, respectively. Based on the comparative results, CNN provides higher classification accuracy than SVM; therefore, this study can serve as a scientific reference for the development of image classification systems in digital agriculture and other applications requiring high accuracy and efficient computational performance.

References

Kelapa Menggunakan Algoritma PCA dan Metode K-Nearest Neighbor (KNN),” JPG J. Pendidik. Guru, vol. 6, no. 2, pp. 263–270, 2025, doi: 10.32832/jpg.v6i2.19351.

[8] S. Sunarso, C. Chairani, J. Triloka, and R. Kurniawan, “Perbandingan Algoritma SVM dan CNN menggunakan PCA untuk Klasifikasi Kematangan Jeruk Keprok ( Comparison of SVM and CNN Algorithms Using PCA for Mandarin Orange Classification ),” vol. 3, no. 2, pp. 203–221, 2025.

[9] R. Ihza Yuzar Vianda, P. Anjarwati, H. Akbar Pratama, R. Maulana Akbar, and R. Dwi Irawan, “Klasifikasi Citra Bunga Multikelas Menggunakan Convolutional Neural Network (CNN),” Pros. Semin. Nas. Teknol. Inf. dan Bisnis, vol. 6, no. 1, pp. 367–376, Jul. 2025, doi: 10.47701/0d10j421.

[10] Ahmad Fariz Fuady, Dwiky Oldi Amsyah, Muhammad Farhan, Rusma Riansyah, and M. Dayyan Dhiyaul Haq, “Implementasi Algoritma Convolutional Neural Network (CNN) untuk Pengenalan dan Klasifikasi Buah Berdasarkan Citra Digital,” J. Publ. Ilmu Komput. dan Multimed., vol. 4, no. 2, pp. 148–159, 2025, doi: 10.55606/jupikom.v4i2.4116.

[11] Imam Fathurrahman, Mahpuz, Muhammad Djamaluddin, Lalu Kerta Wijaya, and Ida Wahidah, “Pengembangan Model Convolutional Neural Network (CNN) untuk Klasifikasi Penyakit Kulit Berbasis Citra Digital [Development of Convolutional Neural Network (CNN) Model for Skin Disease Classification Based on Digital Images],” Infotek J. Inform. dan Teknol., vol. 8, no. 1, pp. 298–308, 2025.

[12] S. Marsland, MACHINE Learning - An Algorithmetic Perspective, Second Edition. New York: CRC Press, 2015. doi: 3034611668, 9783034611664.

[13] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning,” p. 800, 2013.

[14] Dwi Utami, Fathoni Dwiatmoko, and Nuari Anisa Sivi, “Analisis Pengaruh Bayesian Optimization Terhadap Kinerja SVM Dalam Prediksi Penyakit Diabetes,” Infotek J. Inform. dan Teknol., vol. 8, no. 1, pp. 140–150, 2025, doi: 10.29408/jit.v8i1.28468.

[15] H. Sulaiman, Y. Yuliani, Yanto, I. Al Farobi, and K. Panggalih, “Penerapan Model CRISP-DM Untuk Klasifikasi Tumor Otak Menggunakan Algoritma CNN,” Infotek J. Inform. dan Teknol., vol. 8, no. 2, pp. 469–476, Jul. 2025, doi: 10.29408/jit.v8i2.31014.

[16] D. Banu and D. Hanggoro, “Analisis Komparatif Arsitektur Deep Learning Untuk Aplikasi Computer Vision : Studi Literature Review,” vol. 4, no. 2, pp. 1001–1008, 2025.

[17] O. Rainio, J. Teuho, and R. Klén, “Evaluation metrics and statistical tests for machine learning,” Sci. Rep., vol. 14, no. 1, pp. 1–14, 2024, doi: 10.1038/s41598-024-56706-x.

[18] M. I. Ahmed and S. M. Mamun, “Vegetable Image Dataset,” 2021, Kaggle. doi: 10.34740/KAGGLE/DSV/2965251.

[19] G. Simon and C. Aliferis, Artificial Intelligence and Machine Learning in Health Care and Medical Sciences. 2024. [Online]. Available: https://doi.org/10.1007/978-3-031-39355-6_11

[20] M. B. Kurniawan and E. Utami, “Perbandingan Kinerja ResNet50, VGG16, dan MobileNetV2 untuk Klasifikasi Tumor Otak pada Citra MRI,” J. Sist. Inf., vol. 14, no. 2, pp. 767–777, 2025, [Online]. Available: http://sistemasi.ftik.unisi.ac.id

Downloads

Published

20-01-2026

How to Cite

Ida Wahidah, Hadian Mandala Putra, Suhartini, & Taufik Akbar. (2026). Analisa Komparatif Klasifikasi Citra Sayuran dengan Algoritma Support Vector Machine dan Convolutional Neural Network. Infotek: Jurnal Informatika Dan Teknologi, 9(1), 12–23. https://doi.org/10.29408/jit.v9i1.32791

Most read articles by the same author(s)

Similar Articles

<< < 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.