Perbandingan Prediksi Pengunjung Website Menggunakan SARIMA, LSTM dan Holt-Winters TES

Authors

DOI:

https://doi.org/10.29408/jit.v9i1.32909

Keywords:

Holt-Winters TES, LSTM, Prediction, SARIMA, Visitor, Website

Abstract

Rapid technological developments have changed people's lifestyles, marked by an increase in online activity. APJII states that by 2025, 229 million Indonesians will be internet users, while BPS recorded 3,816,750 digital businesses in 2023. This growth has encouraged the use of websites as the primary medium for business and information. Therefore, understanding visitor trends and seasonal patterns is crucial for effective and efficient management. This study offers a new contribution by predicting the number of visitors to the website of PT. XYZ, a tea company in Indonesia. It uses three time series models: Seasonal Auto Regressive Integrated Moving Average (SARIMA), Long Short-Term Memory (LSTM), and Holt-Winters Triple Exponential Smoothing (Holt-Winters TES) with a prediction period of 71 days prior and to predict 14 days ahead. The dataset used consists of 32,518 visitor data entries. Model performance is evaluated using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). The results show that LSTM achieved the lowest error with an MSE of 8257.23, an RMSE of 90.87, and a MAPE of 12.73%. Therefore, the LSTM model achieved the highest accuracy, while Holt-Winters TES performed better than SARIMA in certain aspects. Visitor predictions can support strategic decision-making and content management

References

[1] V. Miftahuljannah and A. Suharso, “Pengimplementasian Berbagai Web Berdasarkan Kebutuhan Pengguna Dengan Menggunakan Metode Systematic Literature Review,” Infotech journal, vol. 9, no. 2, pp. 401–405, Aug. 2023, doi: 10.31949/infotech.v9i2.6341.

[2] K. To Suli, “Rancang Bangun Sistem Informasi Desa Berbasis Website (Studi Kasus Desa Walenrang),” 2023.

[3] Sarah Shabrina, “APJII Rilis Data Terbaru 2025: Pengguna Internet di Indonesia Capai 229 Juta Jiwa,” Teknologi. Accessed: Aug. 15, 2025.

[4] K. Pelanggan Pada Pembelian Tiket Konser di Website Loketcom, M. Ariq Athallah, I. Kamal, and U. Padjadjaran, “Pengaruh User Experience Terhadap Kepuasan Pelanggan Pada Pembelian Tiket Konser di Website Loket.com,” Journal of Digital Business Innovation (DIGBI, vol. 2, [

[5] J. A. Ramadhanti, L. Isyriyah, and R. Maulidi, “Penerapan Motion UI untuk Meningkatkan Pengalaman Pengguna dan Penyampaian Informasi pada Website Kampus,” SMATIKA JURNAL, vol. 15, no. 01, pp. 226–239, Jul. 2025, doi: 10.32664/smatika.v15i01.2039.

[6] Badan Pusat Statistik, “statistik-e-commerce-2023,” Jan. 2025, Accessed: Sep. 18, 2025.

[7] Halimatus Sadiah and Sari Hepy Maharani, “Optimasi SEO On-Page untuk Meningkatkan Visibalitas dan Traffic Website E-Commerce: Studi Kasus pada Website Fahmi Sasirangan,” 2024.

[8] T. Raharjo, D. Kuswoyo, and S. S. Tyas, “Optimalisasi Desain UI/UX WEBSITE DemiFilm.co Dengan Metode Design Thinking Dan Usability Testing,” Jurnal Komputer, Informasi dan Teknologi, vol. 5, no. 1, pp. 1–11, 2025, doi: 10.53697/jkomitek.v5i1.26.

[9] D. Nababan, V. Fajar Alexandro Nipu, R. Rizald, B. Baso, and D. Arisandi, “OPTIMALISASI Kinerja Mikrokomputer Raspberry Pi Pada Smart Greenhouse Berbasis Internet Of Things (Iot) Dengan Algoritma Forecasting Moving Average,” Rabit : Jurnal Teknologi dan Sistem Informasi Univrab, vol. 8, no. 2, pp. 164–172, Jul. 2023, doi: 10.36341/rabit.v8i2.3452.

[10] S. A. Salimu and Y. Yunus, “Prediksi Tingkat Kedatangan Wisatawan Asing Menggunakan Metode Backpropagation (Studi Kasus: Kepulauan Mentawai),” Jurnal Informatika Ekonomi Bisnis, pp. 98–103, Dec. 2020, doi: 10.37034/infeb.v2i4.50.

[11] A. Prayuda and I. Pratama, “Prediksi Jumlah Kedatangan Wisatawan Mancanegara Di Indonesia Berdasarkan Pintu Masuk Kedatangan Udara,” Rabit : Jurnal Teknologi dan Sistem Informasi Univrab, vol. 9, no. 2, pp. 232–241, Jul. 2024, doi: 10.36341/rabit.v9i2.4787.

[12] Bayu Galih Prianda and Edy Widodo, “Perbandingan Metode Seasonal Arima Dan Extreme Learning Machine Pada Peramalan Jumlah Wisatawan Mancanegara Ke Bali,” Jurnal Ilmu Matematika dan Terapan, vol. 15, no. 4, Dec. 2021.

[13] X. Song et al., “Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model,” J Pet Sci Eng, vol. 186, p. 106682, Mar. 2020, doi: 10.1016/j.petrol.2019.106682.

[14] Medi Hermanto Tinambunan and Sri Wahyuni, “Analisis Metode Holt-Winters Exponential Smoothing Dalam Prediksi Ekspor Komoditas Utama 3 Dijit Sitc,” Warta Dharmawansa : Journal of Dharmawangsa University, vol. 18, no. 1, 2024.

[15] U. M. Sirisha, M. C. Belavagi, and G. Attigeri, “Profit Prediction Using ARIMA, SARIMA and LSTM Models in Time Series Forecasting: A Comparison,” IEEE Access, vol. 10, pp. 124715–124727, 2022, doi: 10.1109/ACCESS.2022.3224938.

[16] C. Lidiema, “Modelling and Forecasting Inflation Rate in Kenya Using SARIMA and Holt-Winters Triple Exponential Smoothing,” American Journal of Theoretical and Applied Statistics, vol. 6, no. 3, p. 161, 2017, doi: 10.11648/j.ajtas.20170603.15.

[17] I. Boukrouh, S. Idiri, F. Tayalati, A. Azmani, and L. Bouhsaien, “A Hybrid Approach for Sales Forecasting: Combining Deep Learning and Time Series Analysis,” International Journal of Engineering, vol. 38, no. 4, pp. 859–870, 2025, doi: 10.5829/ije.2025.38.04a.16.

[18] Changsheng Zhu, Pengyun Lu, Wenfang Feng, and Yanbo Wang, “Bimodal Stock Price Prediction Based on Holt-Winters Exponential Smoothing and PCA Whitening Transformation,” Jan. 2025. Accessed: Dec. 02, 2025.

[19] Wikasanti Dwi Rahayu, Uqwatul Alma Wizsa, and Aidina Fitra, “Forecasting International Tourist Arrivals in West Sumatra with SARIMA and Triple Exponential Smoothing for Post-Pandemic Tourism Recovery,” NUANSA INFORMATIKA, vol. 19, no. 1, Jan. 2025.

[20] M. N. Wathani, K. Kusrini, and K. Kusnawi, “Prediksi Tren Pergerakan Harga Saham PT Bank Central Asia Tbk, Dengan Menggunakan Algoritma Long Shot Term Memory (LSTM),” Infotek: Jurnal Informatika dan Teknologi, vol. 6, no. 2, pp. 502–512, Jul. 2023, doi: 10.29408/jit.v6i2.19824.

[21] E. Wallentinsson, “Multiple time series forecasting of cellular network traffic,” 2019.

[22] A. F. Deleviar, Intan Oktaviani, and Hanifah Permatasari, “Pengembangan Website Speech To Video Bahasa Isyarat Indonesia (Bisindo) Berbasis Algoritma Long Shot Term Memory,” Infotek: Jurnal Informatika dan Teknologi, vol. 8, no. 1, pp. 23–33, Jan. 2025, doi: 10.29408/jit.v8i1.26117.

[23] X. Wen and W. Li, “Time Series Prediction Based on LSTM-Attention-LSTM Model,” IEEE Access, vol. 11, pp. 48322–48331, 2023, doi: 10.1109/ACCESS.2023.3276628.

[24] C. C. Holt, “Forecasting seasonals and trends by exponentially weighted moving averages,” Int J Forecast, vol. 20, no. 1, pp. 5–10, Jan. 2004, doi: 10.1016/j.ijforecast.2003.09.015.

[25] T. W. A. Putra, S. Solikhin, and M. Z. Abdillah, “Model Hybrid untuk Prediksi Jumlah Penduduk yang Hidup dalam Kemiskinan,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 6, pp. 1253–1264, Dec. 2023, doi: 10.25126/jtiik.2023107484.

[26] Fath ELrhman Elsmih, G. M. M. Abdelaziz, Salemalzahrani, and Ashaikh A.A. shokeralla, “Prediction The Daily Number Of Confirmed Cases Of Covid-19 In Sudan With Arima And Holt Winter Exponential SMOOTHING,” International Journal of Development Research, vol. 10, no. 8, Aug. 2020.

[27] Abhishek V Tatachar, “Comparative Assessment of Regression Models Based On Model Evaluation Metrics,” International Research Journal of Engineering and Technology (IRJET), vol. 8, no. 9, Sep. 2021.

[28] P. Huriati et al., “Implementation of The Moving Average Method for Forecasting Inventory in CV. Tre Jaya Perkasa,” International Journal of Advanced Science Computing and Engineering, vol. 4, no. 2, pp. 67–75, May 2022, doi: 10.62527/ijasce.4.2.77

[29] A. Sudianto, B. A. C. Permana, Muhammad Wasil, and Harianto, “Penerapan Sistem Payment Gateway Pada E-Commerce Sebagai Upaya Peningkatan Penjualan”, INFOTEK, vol. 8, no. 1, pp. 271–279, Jan. 2025. doi: 10.29408/jit.v8i1.28323

Downloads

Published

20-01-2026

How to Cite

Oei Joviano Matthew Wijaya, & M. Zakki Abdillah. (2026). Perbandingan Prediksi Pengunjung Website Menggunakan SARIMA, LSTM dan Holt-Winters TES. Infotek: Jurnal Informatika Dan Teknologi, 9(1), 94–104. https://doi.org/10.29408/jit.v9i1.32909

Similar Articles

<< < 1 2 3 4 5 6 

You may also start an advanced similarity search for this article.