Sistem Prediksi Kualitas Air Konsumsi Machine Learning Menggunakan Algoritma Random Forest

Authors

  • Fredyo Eltanin Lumban Raja Universitas Bina Sarana Informatika
  • Daniel Purba Universitas Bina Sarana Informatika
  • Syifa Nur Rakhmah Universitas Bina Sarana Informatika
  • Findi Ayu Sariasih Universitas Bina Sarana Informatika
  • Imam Sutoyo Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.29408/jit.v9i1.33035

Keywords:

Clean Water, Water Quality, Random Forest, Machine Learning, SNI, Prediction

Abstract

This study aims to design and implement a clean water quality prediction system based on machine learning using the Random Forest algorithm. The background of this research is the limited public access to fast information regarding water feasibility, while laboratory testing requires significant time and cost. The data used is synthetic data constructed based on the value ranges and threshold limits of water quality in SNI 3553:2015, SNI 3553:2023, and the Ministry of Health Regulation No. 2 of 2023, so that it remains representative and aligned with real conditions. This dataset was created because field data is difficult to obtain completely and in a standardized form, but it still imitates real condition variations according to national standards, with feasibility labels determined based on official regulations. The system development uses the Agile method through the stages of dataset creation, preprocessing, training, evaluation, and application implementation. The Random Forest model is used to classify water into suitable, moderately suitable, and unsuitable categories. The test results show that the model with three physical parameters achieved an accuracy of 96.67%, while the model with ten chemical parameters achieved an accuracy of 100%, confirming that adding more parameters can improve prediction accuracy. This system is expected to help the public and environmental officers in conducting an initial assessment of water quality quickly before laboratory testing and can still be further developed to become more applicable in various regions.

References

[1] E. Alfin, Rahmatulloh, and M. Suendarti, “sentri,Infrastruktur Air dan Tantangan Di Indonesia (2),” SENTRI J. Ris. Ilm., vol. 1, no. 2, pp. 382–391, 2022.

[2] M. M. Mutoffar, M. Naseer, and A. Fadillah, “Klasifikasi Kualitas Air Sumur Menggunakan,” vol. 04, no. 02, pp. 138–146, 2022.

[3] D. A. Dewi, A. S. Wei, L. C. Lin, and C. D. Heng, “Water Quality Prediction using Random Forest Algorithm and Optimization,” J. Appl. Data Sci., vol. 5, no. 3, pp. 1354–1362, 2024, doi: 10.47738/jads.v5i3.348.

[4] S. Kelin, M. Ampak, A. Eka, I. K. Arya, and G. Wiguna, “Analisis Kualitas Air PAM Layak Minum dengan Metode Random Forest dan Decision Tree,” vol. 3, pp. 925–932, 2025.

[5] N. S. Abd Gafur, Wardiah Hamzah, “Penerbit : Pusat Kajian dan Pengelola Jurnal Fakultas Kesehatan Masyarakat UMI. Sumber Air Bersih Yang Sehat Bagi Masyarakat Di Desa Pucak Kec Tompobulu, Pemanfaatan K Kesehatan Masyarakat, Prodi Kesehatan Masyarakat, Fakultas Kajian Dan Pengelola Jurnal ,” Wind. Community Dedication J., vol. 3, no. 1, pp. 186–195, 2022.

[6] Y. Yuliani, “Algoritma Random Forest Untuk Prediksi Kelangsungan Hidup Pasien Gagal Jantung Menggunakan Seleksi Fitur Bestfirst,” Infotek J. Inform. dan Teknol., vol. 5, no. 2, pp. 298–306, 2022, doi: 10.29408/jit.v5i2.5896.

[7] R. Verdiyanto, D. Hartanti, and E. Purwanto, “Pengembangan Aplikasi Point of Sales untuk Prediksi Penjualan Harian Usaha Minuman Menggunakan Algoritma Random Forest Regression,” Infotek J. Inform. dan Teknol., vol. 8, no. 1, pp. 128–139, 2025, doi: 10.29408/jit.v8i1.28386.

[8] U. R. Zalti, D. R. Darmakusuma, M. Ridwansyah, E. Ismanto, and E. Ismanto, “Analisis dan Prediksi Kelayakan Air Minum Menggunakan Algoritma Random Forest,” vol. 15, no. 2, pp. 312–317, 2025.

[9] K. Abdi, A. Warjaya, I. Muthmainnah, and P. H. Pahutar, “Penerapan Algoritma Random Forest dalam Prediksi Kelayakan Air Minum,” J. Ilmu Komput. dan Inform., vol. 3, no. 2, pp. 81–88, 2024, doi: 10.54082/jiki.81.

[10] L. G. I. Fatristya, Wardatun Saimah, Islamul Hadi, and Evi Aryanti, “Peran Air Bersih dan Sanitasi dalam Meningkatkan Kualitas Hidup: Tinjauan Literatur terhadap Pencapaian Tujuan SDGs 2030,” J. Pendidikan, Sains, Geol. dan Geofis. (GeoScienceEd Journal), vol. 6, no. 1, pp. 596–602, 2025, doi: 10.29303/goescienceed.v6i1.598.

[11] Suci Amaliah, M. Nusrang, and A. Aswi, “Penerapan Metode Random Forest Untuk Klasifikasi Varian Minuman Kopi di Kedai Kopi Konijiwa Bantaeng,” VARIANSI J. Stat. Its Appl. Teach. Res., vol. 4, no. 3, pp. 121–127, 2022, doi: 10.35580/variansiunm31.

[12] N. Novianti, S. P. A. Alkadri, and I. Fakhruzi, “Klasifikasi Penyakit Hipertensi Menggunakan Metode Random Forest,” Progresif J. Ilm.

Komput., vol. 20, no. 1, p. 380, 2024, doi: 10.35889/progresif.v20i1.1663.

[13] K. K. R. Indonesia, “Peraturan Menteri Kesehatan Republik Indonesia Nomor 2 Tahun 2023 tentang Persyaratan Kualitas Air Minum,” Jakarta, 2023

[14] B. S. Nasional, “SNI 3553:2023 dan 2015 Air Mineral dan Air Minum dalam Kemasan,” Jakarta, 2023. [Online]. Available: https://akses-sni.bsn.go.id/home

[15] J. Jordon et al., “Synthetic Data -- what, why and how?,” 2022, [Online]. Available: http://arxiv.org/abs/2205.03257

[16] Muhammad Adha Zidane Syahputra Andry, Devito Syachputra, Hanif Zulfi Fauzan, and Yudi Prastyo, “Literatur Review : Pemanfaatan Artificial Intelligence Dalam Predictive Maintenance Untuk Meningkatkan Keandalan Industri,” J. Manag. Innov. Entrep., vol. 2, no. 4, pp. 2384–2395, 2025, doi: 10.70248/jmie.v2i4.2405.

[17] A. Sudianto, B. A. C. Permana, Muhammad Wasil, and Harianto, “Penerapan Sistem Payment Gateway Pada E-Commerce Sebagai Upaya Peningkatan Penjualan”, INFOTEK, vol. 8, no. 1, pp. 271–279, Jan. 2025. doi: 10.29408/jit.v8i1.28323

Downloads

Published

20-01-2026

How to Cite

Lumban Raja, F. E., Purba, D., Nur Rakhmah, S., Ayu Sariasih, F., & Sutoyo, I. (2026). Sistem Prediksi Kualitas Air Konsumsi Machine Learning Menggunakan Algoritma Random Forest. Infotek: Jurnal Informatika Dan Teknologi, 9(1), 128–138. https://doi.org/10.29408/jit.v9i1.33035

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.