Implementasi Algoritma K-Nearest Neighbor Untuk Memprediksi Program Studi Bagi Calon Mahasiswa Baru

Authors

  • Ratna Rahmawati Rahayu STMIK Bani Saleh
  • Lidiawati Lidiawati STMIK Bani Saleh

DOI:

https://doi.org/10.29408/jit.v4i2.3546

Keywords:

Data Mining, Classification, K-Nearest Neighbor, Study Program

Abstract

One of the factors for students graduating on time with good grades is that the study program they take is in accordance with their interests and competencies. For this reason, in the process of admitting new students, it is necessary to carry out selection, information and direction regarding the chosen study program. By using previous year's student data, data mining processing is carried out to produce classifications of study programs for prospective new students. To get maximum results, preprocessing data is carried out, after which the data is divided into training data and testing data. The two data are then processed with the K-Nearest Neighbor algorithm to determine the suitability of the Study Program class in the testing data and then the measurement accuracy value is calculated. Because it has a high accuracy value of 74%, using this training data it is developed in the form of an application with Java NetBeans which can be used to assist prospective new students in predicting the appropriate study program.

References

A. Q. Sesilia Novita R, Prihastuti Harsani, “Penerapan K-Nearest Neighbor ( KNN ) untuk Klasifikasi Anggrek Berdasarkan Karakter Morfologi Daun dan Bunga,†J. Ilm. Ilmu Komput. dan Mat., vol. 15, no. 1, pp. 118–125, 2018, [Online]. Available: https://journal.unpak.ac.id/index.php/komputasi/article/view/1267/1074.

A. S. Budiman and X. A. Parandani, “Uji Akurasi Klasifikasi Dan Validasi Data Pada Penggunaan Metode Membership Function Dan Algoritma C4.5 Dalam Penilaian Penerima Beasiswa,†Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 9, no. 1, pp. 565–578, 2018, doi: 10.24176/simet.v9i1.2021.

A. Q. Sesilia Novita R, Prihastuti Harsani, “Penerapan K-Nearest Neighbor ( KNN ) untuk Klasifikasi Anggrek Berdasarkan Karakter Morfologi Daun dan Bunga,†J. Ilm. Ilmu Komput. dan Mat., vol. 15, no. 1, pp. 118–125, 2018, [Online]. Available: https://journal.unpak.ac.id/index.php/komputasi/article/view/1267/1074.

A. Yobioktabera and A. W. Wibowo, “Penerapan Data Mining Untuk Memprediksi Penerimaan Calon Mahasiswa Baru Fakultas Kedokteran,†J. Tek. Elektro Terap., vol. 10, no. 1, pp. 16–19, 2021, [Online]. Available: https://jurnal.polines.ac.id/index.php/jtet/article/view/2550/pdf.

Luh Gede Pivin Suwirmayanti, “Penerapan Metode K-Nearest Neighbor Untuk Sistem Rekomendasi Pemilihan Mobil Implementation of K-Nearest Neighbor Method for Car Selection Recommendation System,†Techno.COM, vol. 16, no. 2, pp. 120–131, 2017.

M. K. Khamdani, N. Hidayat, and R. K. Dewi, “Implementasi Metode K-Nearest Neighbor Untuk Mendiagnosis Penyakit Tanaman Bawang Merah,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 1, pp. 11–16, 2021.

M. Reza Noviansyah, T. Rismawan, and D. Marisa Midyanti, “Penerapan Data Mining Menggunakan Metode K-Nearest Neighbor Untuk Klasifikasi Indeks Cuaca Kebakaran Berdasarkan Data Aws (Automatic Weather Station) (Studi Kasus: Kabupaten Kubu Raya),†J. Coding, Sist. Komput. Untan, vol. 06, no. 2, pp. 48–56, 2018, [Online]. Available: http://jurnal.untan.ac.id/index.php/jcskommipa/article/view/26672.

M. Rivki and A. M. Bachtiar, “Implementasi Algoritma K-Nearest Neighbor Dalam Pengklasifikasian Follower Twitter Yang Menggunakan Bahasa Indonesia,†J. Sist. Inf., vol. 13, no. 1, p. 31, 2017, doi: 10.21609/jsi.v13i1.500.

M. Saiful and Syamsuddin, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Predikat Ketuntasan Belajar Siswa Pasca Pandemi Covid 19,†J. Inform. dan Teknol., vol. 4, no. 1, pp. 96–104, 2021.

R. A. Arnomo, W. L. Y. Saptomo, and P. Harsadi, “Implementasi Algoritma K-Nearest Neighbor Untuk Identifikasi Kualitas Air (Studi Kasus : Pdam Kota Surakarta),†J. Teknol. Inf. dan Komun., vol. 6, no. 1, 2018, doi: 10.30646/tikomsin.v6i1.345.

R. R. Rahayu, “Mplementasi algoritma c4.5 untuk menentukan aturan rekomendasi calon penerima beasiswa,†INFOKOM, vol. 7, no. 2, pp. 37–43, 2019, [Online]. Available: http://journal.piksi.ac.id/index.php/INFOKOM/article/view/163.

S. Sanjaya, M. L. Pura, S. K. Gusti, F. Yanto, and F. Syafria, “K-Nearest Neighbor for Classification of Tomato Maturity Level Based on Hue, Saturation, and Value Colors,†Indones. J. Artif. Intell. Data Min., vol. 2, no. 2, p. 101, 2019, doi: 10.24014/ijaidm.v2i2.7975.

Yahya and W. Puspita Hidayanti, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Efektivitas Penjualan Vape (Rokok Elektrik) pada ‘Lombok Vape On,’†Infotek J. Inform. dan Teknol., vol. 3, no. 2, pp. 104–114, 2020, doi: 10.29408/jit.v3i2.2279.

B. Liu, Web Data Mining Exploring Hyperlinks, Content, and Usage Data, Second. Springer London, 2011.

J. Han, M. Kamber, and J. Pei, Data Mining Concepts and Techniques, Third. Morgan Kaufman Publishers, 2012

M. Saiful and S. Aris, “Penerapan Sistem Informasi Tracer Study untuk Mengetahui Tingkat Kontribusi Perguruan Tinggi dengan Kompetensi Lulusan ( Studi Kasus Fakultas Teknik Universitas Hamzanwadi ),†J. Inform. dan Teknol., vol. 2, no. 1, pp. 43–52, 2019.

Downloads

Published

31-07-2021

How to Cite

Rahayu, R. R., & Lidiawati, L. (2021). Implementasi Algoritma K-Nearest Neighbor Untuk Memprediksi Program Studi Bagi Calon Mahasiswa Baru. Infotek: Jurnal Informatika Dan Teknologi, 4(2), 131–141. https://doi.org/10.29408/jit.v4i2.3546

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.