Tingkat Ketepatan Hasil Perhitungan Integrasi Numerik Menggunakan Bahasa Pemrograman C# Pada Metode Reimann dan Trapesium
DOI:
https://doi.org/10.29408/jit.v2i1.981Keywords:
C #, numerical integration, Reimann, TrapezoidAbstract
Numerical integration is one of several subjects in the numerical method subject that is applied to various universities. The existence of numerical integration has various roles in decision making, especially in science and technology.
The application of numerical methods, based on several studies, included: numerical completion of the system of linear equations using relaxation method, Numerical Differential Application in Digital Image Processing (Application of Differential Numeric In Digital Image Processing), comparison of Gauss-Legendre method, Gauss-Lobatto and Gauss- Kronrod on the numerical integration of exponential functions, decreasing the solitary wave equation with a numerical second-order Fourier series, numerical integration using the quadratic Gauss method with a hermit interpolation approach and legendary polynomials.
From several studies that have been carried out by various parties, there has not been found an approach to solving numerical integration using one of the programming languages such as the C ++ language, Fortran language, C # language and others, therefore in this study, the research raised numerical problems, especially numerical integration using the C # programming language.
To make research using the C # programming language about the completion of numerical integration, it was carried out using two methods, the reimann method and the trapezoidal method. Both of these methods are applied, resulting in a calculation approach to analytic values, absolute errors, relative errors and calculation accuracy.
Accuracy calculation uses C # (C-Sharp) programming language on Reimann and Trapezoida (Trapezoid) methods to calculate the area of building under the curve, resulting in high accuracy (99.74%) when using the reimann method and 99.49% when using the trapezoidal method) greatly influenced by the number of segments used in the calculation
DOI : 10.29408/jit.v2i1.981
References
B. A. B. Iii and I. Numerik, “Bab iii integrasi numerik,†pp. 46–79.
P. Sistem, D. Sistem, M. J. Fitzgerald, and A. F. Fitzgerald, “Apa itu Subsistem ? Apa itu Supersistem ?,†pp. 1–28.
D. Sistem, “Pengertian sistem dan analisis sistem 1.,†pp. 1–9.
A. Rachmatullah, “Mempelajari C #: Bahasa Pemrograman Modern Daftar Isi Singkat,†2002.
Y. Fauzi, J. Matematika, F. Matematika, P. Alam, and U. Bengkulu, “Aplikasi Differensial Numerik Dalam Pengolahan Citra Digital ( Application of Differential Numeric In Digital Image Processing ),†vol. 3, no. 2, pp. 282–285, 2007.
P. M. Gauss-legendre and G. D. A. N. G.-K. Pada, “Perbandingan metode gauss- legendre, gauss-lobatto dan gauss- kronrod pada integrasi numerik fungsi eksponensial (,†vol. I, no. 2, pp. 99–108.
D. Deret, F. Orde, and D. U. A. Secara, “Penurunan persamaan gelombang soliton dengan deret fourier orde dua secara numerik,†no. 1994, pp. 128–138, 1996.
Zainal Abidin and Fandi Purnama, “Kesalahan Akibat Integrasi Numerik pada Sinyal Pengukuran Getaran dengan Metode Euler dan Trapesium,†J. Tek. Mesin, vol. 11, no. 1, pp. 19–24, 2009
Downloads
Published
How to Cite
Issue
Section
License
Semua tulisan pada jurnal ini menjadi tanggung jawab penuh penulis. Jurnal Infotek memberikan akses terbuka terhadap siapapun agar informasi dan temuan pada artikel tersebut bermanfaat bagi semua orang. Jurnal Infotek ini dapat diakses dan diunduh secara gratis, tanpa dipungut biaya sesuai dengan lisense creative commons yang digunakan.Jurnal Infotek is licensed under a Creative Commons Attribution 4.0 International License.
Statistik Pengunjung