Dinamika Sebaran Suhu Udara Menggunakan Citra Landsat 8 di Wilayah Denpasar Periode 2018-2021
DOI:
https://doi.org/10.29408/kpj.v7i2.19128Keywords:
NDVI, ESG, correlation, Landsat 8 imagery, average air temperatureAbstract
Research has been conducted on the Dynamics of Air Temperature Distribution Using Landsat 8 Imagery for the 2018-2021 Period, in the Denpasar area study area with a location point at the Sanglah Geophysical Station. The methods used in this study were Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST), while the analysis used was correlation and validation. The results of the NDVI value study explained that from 2018 to 2021 the NDVI density value was getting higher so that the resulting temperature was low. Meanwhile, the determination of ESG on the dynamics of average air temperature explains that the average air temperature value in each year does not always rise linearly, in 2018 the highest average air temperature distribution was at 29.56 °C, in 2019 it was 35.56 °C, in 2020 it was 25.62 ° C and 2021 it was 30.72 ° C. In testing and analysis, a correlation relationship was obtained between Landsat 8 imagery (band 10 and band 11) and BMKG, which showed that the temperature between Landsat 8 imagery and BMKG was correlated in the same direction. The relationship between the distribution of average air temperatures with the implementation of PPKM in the Denpasar area has nothing to do with it as previously thought. Due to the increase in temperature, landsat 8 and BMKG images are only affected by the atmosphereReferences
Adeanti, M. Harist, C. M. 2019. Analisis Spasial Kerapatan Bangunan dan Pengaruhnya Terhadap Suhu. Departemen Geografi, FMIPA, Universitas Indonesia.
Carmin, J., Anguelovski, I., & Roberts, D. (2012). Urban climate adaptation in the global south: planning in an emerging policy domain. Journal of Planning Education and Research, 32(1), 18-32
Handayani, M. N., Sasmito, B., Putra, A. 2017. Analisis Hubungan Antara Perubahan Suhu Dengan Indeks Kawasan Terbangun Menggunakan Citra Landsat. Program Studi Teknik Geodesi Fakultas Teknik Universitas Diponegoro
Indriyanti, Siti. 2017. Analisis Indeks Vegetasi Dari Citra Satelit Landsat Untuk Pemetaan Sebaran Mangrove di Pesisir Kabupaten Tuban Jawa Timur. Program Studi Pemanfaatan Sumberdaya Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Brawijaya
Prasasti, I., Febrianti, N., Parwati., Sari, N.M. 2015. Analisis Perubahan Sebaran Pulau Panas Perkotaan (Urban Heat Island) di Wilayah DKI Jakarta dan Hubungannya dengan Perubahan Lahan, Kondisi Vegetasi dan Perkembangan Kawasan Terbangun Menggunakan Data Penginderaan Jauh. Prosiding Pertemuan Ilmiah Tahunan XX 2015. Indonesian National Institute of Aeronautics and Space, University of South Australia
Putra, Aprizon. 2009. Penginderaan Jauh Jilid1_Cetakan 2_Tahun 1992 Prof. Dr. Sutanto. Jurusan Geografi Fakultas Ilmu Sosial Universitas Negeri Padang
Ramdhan, Muhammad. 2020. Pengaruh Pandemik Covid-19 Terhadap Tutupan Vegetasi di DKI Jakarta. Jurnal Riset Jakarta Vol. 13 No. 2 2337-4381. https://doi.org/10.37439/jurnaldrd/v13i2.33
Rubini A. 1995. Land Resource Balance. Conference Proceeding on Remote Sensing and GIS for Environmental Resources Management, BPPT New Building, Jakarta, June 6-8, 1995: page 7-1 to 7-14. Agency for The Assessment and Application of Technology (BPPTeknologi), Jalan Thamrin No.8 Jakarta.
Wiweka. 2014. Pola Suhu Permukaan dan Udara Menggunakan Citra Satelit Landsat Multitemporal.