Pengaruh Dopping Mn Pada Semikonduktor AZO Terhadap Laju Fotodegradasi Pewarna Tekstil Congo Red Menggunakan Radiasi UV A

Authors

DOI:

https://doi.org/10.29408/kpj.v8i2.25497

Keywords:

Fotodegradasi, AZO, AZOMn, Congo Red

Abstract

Pengujian fotodegradasi pewarna tekstil Congo Red telah berhasil dilakukan menggunakan agen AZO dan AZOMn. Material tersebut disintesis terlebih dahulu disintesis menggunakan metode kopresipitasi dengan formulasi Zn0,95-xAl0,05Mnx dengan nilai x sebesar 0 dan 0,01. Material hasil modifikasi tersebut diuji menggunakan spektrometer reflektan (DRS) untuk mendapatkan nilai relektansi yang digunakan dalam proses perhitungan nilai energi gap dengan bantuan persamaan Kulbelka Munk. AZO dengan konsentrasi Al 5% wt dan Mn 0% wt memiliki energi gap sebesar 3,290 eV dan AZOMn dengan konsentrasi Al 5% wt dan Mn 0,1% wt memiliki energi gap 3,279 eV. Aktivitas fotokatalis AZO dan AZOMn telah diuji menggunakan sumber radiasi sinar UV A dengan puncak serapan Congo Red 480 nm selama 2 jam. Dari hasil karakterisasi, kedua agen fotokatalis ini mampu mendegradasi limbah pewarna tekstil Congo Red dengan persentase AZO dan AZOMn beturut – turut 97,9% dan 67,6%. Laju fotodegradasi juga menampilkan pola yang sama yaitu material AZO memiliki kelajuan fotodegradasi sebesar 0,03504/menit sedangkan material AZOMn memiliki kelajuan fotodegradasi sebesar 0,00759/menit. Nilai ini menunjukkan bahwa AZO memiliki kemampuan fotodegradasi lebih baik dibandingkan dengan AZOMn dalam limbah pewarna tekstil Congo Red

References

Abdulrahman, A. F., Abdulqodus, A. N., & Almessiere, M. A. (2023). Biosynthesis of Al-doped ZnO nanoparticles with different Al doping ratio for methylene orange dye degradation activity. Ceramics International, 49(22), 34920–34936. https://doi.org/10.1016/j.ceramint.2023.08.165

Adam, R. E., Pozina, G., Willander, M., & Nur, O. (2018). Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH. Photonics and Nanostructures - Fundamentals and Applications, 32, 11–18. https://doi.org/10.1016/j.photonics.2018.08.005

Al-Gariaa, A. M., Elasala, G. S., Ismail, E. H., Khalil, M. M. H., & El-Sewify, I. M. (2023). Photodegradation of antibacterial cefotaxime using Mn doped ZnO nanosphere. Inorganic Chemistry Communications, 158. https://doi.org/10.1016/j.inoche.2023.111434

Amari, R., Benrezgua, E., Deghfel, B., Abdelhalim, Z., Kamil Yaakob, M., Jeffrey Basirun, W., … Azmin Mohamad, A. (2022). Ni doping effect on the electronic, structural and optical properties of ZnO nanoparticles prepared by Co-precipitation route. Optical Materials, 128. https://doi.org/10.1016/j.optmat.2022.112398

Anugrahwidya, R., Yudasari, N., & Tahir, D. (2020). Optical and structural investigation of synthesis ZnO/Ag Nanoparticles prepared by laser ablation in liquid. Materials Science in Semiconductor Processing, 105. https://doi.org/10.1016/j.mssp.2019.104712

Ardila-Leal, L. D., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., & Quevedo-Hidalgo, B. E. (2021, June 2). A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Molecules, Vol. 26. MDPI AG. https://doi.org/10.3390/molecules26133813

Bin Mobarak, M., Pinky, N. S., Chowdhury, F., Hossain, M. S., Mahmud, M., Quddus, M. S., … Ahmed, S. (2023). Environmental remediation by hydroxyapatite: Solid state synthesis utilizing waste chicken eggshell and adsorption experiment with Congo red dye. Journal of Saudi Chemical Society, 27(5). https://doi.org/10.1016/j.jscs.2023.101690

Blažeka, D., Car, J., Klobučar, N., Jurov, A., Zavašnik, J., Jagodar, A., … Krstulović, N. (2020). Photodegradation of methylene blue and rhodamine b using laser-synthesized zno nanoparticles. Materials, 13(19), 1–15. https://doi.org/10.3390/ma13194357

Boudiaf, S., Nasrallah, N., Mellal, M., Belhamdi, B., Belabed, C., Djilali, M. A., & Trari, M. (2021). Kinetic studies of Congo Red Photodegradation on the hetero-system CoAl2O4/ZnO with a stirred reactor under solar light. Journal of Environmental Chemical Engineering, 9(4). https://doi.org/10.1016/j.jece.2021.105572

Chen, J. P., Sorensen, C. M., Klabunde, K. J., Hadjipanayis, G. C., Devlin, E., & Kostikas, A. (1996). Size-dependent magnetic properties of MnFe 2 O 4 fine particles synthesized by coprecipitation.

Chen, W., Yao, C., Gan, J., Jiang, K., Hu, Z., Lin, J., … Wu, J. (2020). ZnO colloids and ZnO nanoparticles synthesized by pulsed laser ablation of zinc powders in water. Materials Science in Semiconductor Processing, 109. https://doi.org/10.1016/j.mssp.2020.104918

Chey, C. Oeurn. (2015). Synthesis of ZnO and Transition Metals Doped ZnO Nanostructures, their Characterization and Sensing Applications. Linköping University Electronic Press.

Ciechan, A., & Bogusławski, P. (2021). Theory of the sp–d coupling of transition metal impurities with free carriers in ZnO. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-83258-1

Fatima, H. (2022). Western Australian School of Mines: Minerals, Energy and Chemical Engineering Synthesis and characterization of ZnO-based/derived nanoparticles as promising photocatalysts.

Ghorbali, R., Essalah, G., Ghoudi, A., Guermazi, H., Guermazi, S., El Hdiy, A., … Leroy, G. (2023). The effect of (In, Cu) doping and co-doping on physical properties and organic pollutant photodegradation efficiency of ZnO nanoparticles for wastewater remediation. Ceramics International, 49(21), 33828–33841. https://doi.org/10.1016/j.ceramint.2023.08.076

Henni, A., Merrouche, A., Telli, L., & Karar, A. (2016). Studies on the structural, morphological, optical and electrical properties of Al-doped ZnO nanorods prepared by electrochemical deposition. Journal of Electroanalytical Chemistry, 763, 149–154. https://doi.org/10.1016/j.jelechem.2015.12.037

Hou, M., & Ge, J. (2017). Armoring Enzymes by Metal–Organic Frameworks by the Coprecipitation Method. In Methods in Enzymology (Vol. 590, pp. 59–75). Academic Press Inc. https://doi.org/10.1016/bs.mie.2016.12.002

Lanjwani, M. F., Tuzen, M., Khuhawar, M. Y., & Saleh, T. A. (2024, January 1). Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review. Inorganic Chemistry Communications, Vol. 159. Elsevier B.V. https://doi.org/10.1016/j.inoche.2023.111613

Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275–290. https://doi.org/10.1016/j.biori.2019.09.001

Nawaz, M. A., & Dissertation, P. (2016). Effect of Transition Metals Doping on the Properties of ZnO Thin Films.

Özgür, Ü., & Morkoç, H. (2006). Optical Properties of ZnO and Related Alloys.

Roguai, S., & Djelloul, A. (2021). Structural, microstructural and photocatalytic degradation of methylene blue of zinc oxide and Fe-doped ZnO nanoparticles prepared by simple coprecipitation method. Solid State Communications, 334–335. https://doi.org/10.1016/j.ssc.2021.114362

Rosyidah, N. (1114). Synthesis Of Zn 1-X Al X O Using Coprecipitation Method And Characterization Of Electrical Properties.

Salgado, B. C. B., Cardeal, R. A., & Valentini, A. (2019). Photocatalysis and Photodegradation of Pollutants. In Nanomaterials Applications for Environmental Matrices: Water, Soil and Air (pp. 449–488). Elsevier. https://doi.org/10.1016/B978-0-12-814829-7.00015-X

Sekaran, C., Dhandapani, B., Alagesan, T., & Balaji, G. (2022). Enhanced photocatalytic degradation kinetics of azo-dyes by novel Ni2+ and Ag2+ doped ZnO nanocatalysts. Applied Surface Science Advances, 12. https://doi.org/10.1016/j.apsadv.2022.100333

(Springer Series in Materials Science 156) Qian Sun, Jung Han (auth.), Stephen Pearton (eds.) - GaN and ZnO-based Materials and Devices-Springer-Verlag Berlin Heidelberg (2012). (n.d.).

Tanaka, Y., Utaka, T., Kikuchi, R., Sasaki, K., & Eguchi, K. (2003). CO removal from reformed fuel over Cu/ZnO/Al 2 O 3 catalysts prepared by impregnation and coprecipitation methods. In Applied Catalysis A: General (Vol. 238).

Yudasari, N., Anugrahwidya, R., Tahir, D., Suliyanti, M. M., Herbani, Y., Imawan, C., … Djuhana, D. (2021). Enhanced photocatalytic degradation of rhodamine 6G (R6G) using ZnO–Ag nanoparticles synthesized by pulsed laser ablation in liquid (PLAL). Journal of Alloys and Compounds, 886. https://doi.org/10.1016/j.jallcom.2021.161291

Yudasari, N., Hardiansyah, A., Herbani, Y., S uliyanti, M. M., & Djuhana, D. (n.d.). Single-step laser ablation synthesis of ZnO-Ag nanocomposites for broad-spectrum dye photodegradation and antibacterial photoinactivation. Retrieved from https://ssrn.com/abstract=4352158

Downloads

Published

2024-08-30

Issue

Section

Articles