E-LKPD Berbasis STEAM Dengan Teknologi Augmented Reality (AR) : Upaya Melatih Berpikir Kreatif

Authors

  • Reza Lika Sari UIN Raden Intan Lampung
  • Antomi Saregar UIN Raden Intan Lampung
  • Sodikin UIN Raden Intan Lampung

DOI:

https://doi.org/10.29408/kpj.v8i3.28414

Keywords:

Augmented Reality, Creative Thinking, STEAM approach

Abstract

T

This research aims to develop and convey the feasibility and user response to E-LKPD assisted by the Augmented Reality (AR) application with a STEAM approach to train creative thinking skills (creative thinking) of class XII students. The research uses the Research and Development (R&D) method with the development of the ADDIE (Analysis, Design, Development, Implementation, Evaluation) model. The research subjects consisted of material validation by 3 expert validators, media validation by 3 expert validators, teacher responses by 2 educators, and student responses by 68 class XII students at SMA 2 Perintis Bandar Lampung and SMAN 01 Tanjung Raya Mesuji Lampung. Validation results by material and media experts show a very high level of feasibility, with percentages of 89% and 86% respectively. The response from educators and students was also very positive regarding the attractiveness and feasibility of the E-LKPD being developed, with trial results reaching 91% for educators, 88% for small group trials, and 86% for field trials. Based on these results, it can be concluded that the development of AR-assisted E-LKPD with a STEAM approach is declared feasible and interesting as physics teaching material in class XII.

References

Bakali U., Killawala C., Monteagudo E., Dikici E., Deo SK., & Daunert S. (2024). Exhaled breath analysis applications for evaluating occupational and environmental exposures.. TrAC - Trends in Analytical Chemistry, 177, 117787.

https://doi.org/10.1016/j.trac.2024.117787

Bikov A., Paschalaki K., Logan SR., Horváth I, Kharitonov SA, Barnes PJ., Usman OS., & Paredi P. (2013). Standardised exhaled breath collection for the measurement of exhaled volatile organic compounds by proton transfer reaction mass spectrometry. BMC Pulmonary Medicine, 13(43), 1-7.

http://www.biomedcentral.com/1471-2466/13/43

Binson V.A., Akbar R., Thankachan N., & Thomas S. (2022). Design and construction of a portable e-nose system for human exhaled breath VOC analysis. Journal of Mater Today Proc, 58(1), 422–427. https://doi.org/10.1016/j.matpr.2022.02.388

Budianto A. (2022). A propanol gas measurement system using a quartz crystal microbalance as a mass sensor. Journal of Environmental Engineering and SustainableTechnology, 9:(2), 70–74. http://dx.doi.org/10.21776/ub.jeest.2022.009.02.4

Cazzola M., Andrea S., Rosamaria C., Alberto B., Eugenio M., Luigino C., Paola R., Chiara C., Josuel O., Roberto P., Corrado D.N., & Arnaldo D.A. (2015). Analysis of exhaled breath fingerprints and volatile organic compounds in COPD. Journal of COPD Research and Practice, 1(7), 1-8.

https://doi.org/10.1186/s40749-015-0010-1

Chen T., Liu T., Zhao H., & Chen Q. (2021). Exhaled breath analysis in disease detection. Clinica Chimica Acta, 515, 61-72.

https://doi.org/10.1016/j.cca.2020.12.036

Cikach FS., & Dweik RA. (2012). Cardiovascular Biomarkers in Exhaled Breath. Progress in Cardiovascular Diseases, 55(1), 34-43.

https://doi.org/10.1016/j.pcad.2012.05.005

Hashoul D., & Haick H. (2024). Sensors for detecting pulmonary diseases from exhaled breath. European Respiratory Review, 28(152), 1-13.

https://doi.org/10.1183/16000617.0011-2019

Lee S., Kim M., Ahn BJ., & Jang Y. (2023). Odorant-responsive biological receptors and electronic noses for volatile organic compounds with aldehyde for human health and diseases: A perspective review. Journal of Hazard Mater, 455, 131555. https://doi.org/10.1016/j.jhazmat.2023.131555

Maloča VI., Turkalj M., Nogalo B., Bulat LS., & Plavec D. (2017). Diagnostic value of a pattern of exhaled breath condensate biomarkers in asthmatic children. Allergologia et Immunopathologia (Madr), 45(1),2–10. https://doi.org/10.1016/j.aller.2016.05.001

Paleczek A., & Rydosz A. (2024). The effect of high ethanol concentration on E-nose response for diabetes detection in exhaled breath: Laboratory studies. Sensors and Actuators B: chemical, 408, 1-10.

https://doi.org/10.1016/j.snb.2024.135550

Scarlata S., Pennazza G., Santonico M., Pedone C., & Antonelli IR. (2015). Exhaled breath analysis by electronic nose in respiratory disease. Expert Rev Mol Diagn, 15(7), 933-956.

https://doi.org/10.1586/14737159.2015.1043895

Vasilescu A., Hrinczenko B., Swain GM., & Peteu SF. (2021). Exhaled breath biomarker sensing. Biosensors and Bioelectronics, 182, 113193.. https://doi.org/10.1016/j.bios.2021.113193

Widhowati AA., Wardoyo AYP., Dharmawan HA., Nurhuda M., & Buadianto A. (2021). Development of a portable volatile organic compounds concentration measurement system using a CCS811 air quality sensors. IEEE Xplore, 1-5.

https://doi.org/10.1109/ISESD53023.2021.9501642

Wijsman PC., Goorsenberg AWM., d’Hooghe JNS., Weersink EJM., Fenn DW., Maitland van der Zee AH., Annema JT., Brinkman P., & Bonta PI. (2024). Exhaled breath analyses for bronchial thermoplasty in severe asthma patients. Respiratory Medicine, 225, 1-10 https://doi.org/10.1016/j.rmed.2024.107583

Wu G., Du H., Pakravan K., Kim W., Cha YL., Chiang ST., Majid B., Xinyu Z., Sun HK., Xuejun P., & Dong JK. (2023). Polyaniline/Ti3C2Tx functionalized mask sensors for monitoring of CO2 and human respiration rate. Journal Chemical Engineering, 475(1),146228. https://doi.org/10.1016/j.cej.2023.146228

Yani A., Wardoyo AYP., Anggraeni D., & Budianto A. (2024). Development of a Measurement system of Ethanol Gas Based on TGS-2600, TGS-2603, and MQ-138 sensors. AIP Conference Proceedings, 3236(1), 1-6.

https://doi.org/10.1063/5.0211681

Downloads

Published

2024-12-28

Issue

Section

Articles