Assessment of Tsunami Potential in Bali Using TOAST Modeling: Implications for Disaster Risk Reduction

Authors

  • Ni Putu Yuni Nurmalasari Universitas Udayana
  • I Gusti Agung Putra Adnyana Universitas Udayana

DOI:

https://doi.org/10.29408/kpj.v10i1.32548

Keywords:

tsunami hazard, TOAST modeling, Bali, disaster risk reduction, early warning system

Abstract

This study aims to evaluate the tsunami hazard potential in the Bali region using multi-scenario numerical modeling to support disaster mitigation and early warning planning. Tsunami simulations were performed using the Tsunami Observation and Simulation Terminal (TOAST) with the EasyWave module. The model inputs were derived from the BMKG historical earthquake catalog and the 2017 Indonesian Seismic Hazard Map (PUSGEN), focusing on the Flores Back Arc Thrust segment north of Bali. Four earthquake magnitude scenarios (Mw 7.0, 7.2, 7.5, and 8.5) were simulated to estimate maximum wave heights and tsunami arrival times along the Bali coastline. The results indicate that nearly all coastal areas of Bali are vulnerable to tsunami impacts. In the worst-case scenario (Mw 8.5), maximum wave heights exceed 5 m in Sanur (Denpasar), Klungkung, and southern Karangasem, with short arrival times ranging from 5 to 22 minutes, corresponding to the highest warning level. Although moderate-magnitude scenarios (Mw 7.0–7.5) generate lower wave heights, tsunami arrival times remain rapid, indicating limited evacuation opportunities. These findings highlight the urgency of multi-scenario tsunami hazard assessment, enhancement of tsunami early warning systems, and improvement of evacuation preparedness to reduce tsunami risk in Bali.

References

1. Annaka, T. (2021). Development of probabilistic tsunami hazard assessment based on multi-scenario simulations. Natural Hazards and Earth System Sciences, 21(2), 451–463. https://doi.org/10.5194/nhess-21-451-2021

Behrens, J., & Schröter, J. (2010). Multiscale modelling of tsunami evolution with adaptive mesh refinement. Ocean Dynamics, 60(5), 1331–1345. https://doi.org/10.1007/s10236-010-0322-6

Clark, K. M. (2018). Voices from the field: Incorporating history of mathematics in teaching. In Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education (pp. 1640–1649). Rzeszow, Poland.

Daryono, M. R. (2011). Kajian tsunami di Bali berdasarkan catatan historis (Unpublished master thesis). Universitas Gadjah Mada, Yogyakarta, Indonesia.

Fritz, H. M., Kongko, W., Moore, A., McAdoo, B. G., & Gusman, A. (2007). Extreme runup from the 17 July 2006 Java tsunami. Geophysical Research Letters, 34(12), L12602. https://doi.org/10.1029/2007GL029404

Gusman, A. R., Sheehan, A., Satake, K., Heidarzadeh, M., & Mulia, I. E. (2019). Tsunami data assimilation of the 2018 Palu, Indonesia, tsunami. Geophysical Research Letters, 46(15), 8721–8730. https://doi.org/10.1029/2019GL083995

Hall, R. (2012). Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570–571, 1–41. https://doi.org/10.1016/j.tecto.2012.04.021

Harig, S., Behrens, J., & Schwartzkopff, A. (2013). Tsunami simulations using EasyWave for operational early warning. Pure and Applied Geophysics, 170(9–10), 1557–1571. https://doi.org/10.1007/s00024-012-0528-5

Irsyam, M., Widiyantoro, S., Natawidjaja, D. H., Triyoso, W., & Hanifa, R. (2020). Peta sumber dan bahaya gempa Indonesia 2017. Bandung: Pusat Studi Gempa Nasional (PUSGEN).

Kusumayudha, S. B. (2019). Geologi bencana dan mitigasi di Indonesia. Yogyakarta: Gadjah Mada University Press.

Lay, T., Kanamori, H., Ammon, C. J., Nettles, M., Ward, S. N., Aster, R. C., ... & Sipkin, S. (2005). The great Sumatra–Andaman earthquake of 26 December 2004. Science, 308(5725), 1127–1133. https://doi.org/10.1126/science.1112250

Løvholt, F., Glimsdal, S., & Harbitz, C. B. (2015). A review of tsunami hazard assessment in Norway. Philosophical Transactions of the Royal Society A, 373(2053), 20140370. https://doi.org/10.1098/rsta.2014.0370

McCaffrey, R. (2009). The tectonic framework of the Sumatran subduction zone. Annual Review of Earth and Planetary Sciences, 37, 345–366. https://doi.org/10.1146/annurev.earth.031208.100212

Okal, E. A. (2006). The 2004 Sumatra tsunami: Anatomy of a disaster. Pure and Applied Geophysics, 164(2–3), 277–293. https://doi.org/10.1007/s00024-006-0192-z

Riyanti, C. D. (2017). Numerical modeling of tsunami hazard in Bali and Lombok (Doctoral dissertation). University of Tokyo, Japan.

Satake, K. (2015). Tsunamis: Case studies and recent developments. Annual Review of Earth and Planetary Sciences, 43, 1–25. https://doi.org/10.1146/annurev-earth-060614-105308

Schwartzkopff, A., Behrens, J., & Harig, S. (2012). Real-time tsunami forecasting with EasyWave. In Proceedings of the International Conference on Tsunami Warning (pp. 55–62). Hamburg, Germany.

Widiyantoro, S., Gunawan, E., Muhari, A., Rawlinson, N., & Cummins, P. R. (2020). Implications of recent seismic and tsunami events for hazard and risk assessment in Indonesia. Nature Communications, 11, 4424. https://doi.org/10.1038/s41467-020-18202-9

Yadav, R., Kumar, N., & Suresh, G. (2022). Multi-scenario tsunami modeling for hazard assessment in the Indian Ocean region. Natural Hazards, 112(1), 521–543. https://doi.org/10.1007/s11069-021-05082-6

Downloads

Published

2026-02-05