Pengembangan Kit-PEKAT (Pengukur Konsentrasi Emisi Air-Udara di Area Estuari) Untuk Mengukur Tingkat Konsentrasi Emisi di Daerah Estuari

Authors

  • Arif Budianto Program Studi Fisika Universitas Mataram
  • Ni Ketut Anggriani Program Magister Pendidikan IPA, FKIP, Universitas Mataram
  • Kasnawi Al Hadi Program Studi Fisika, FMIPA, Universitas Mataram
  • Alfina Taurida Alaydrus Program Studi Fisika, FMIPA, Universitas Mataram
  • Mira Andini Program Studi Fisika, FMIPA, Universitas Mataram
  • Lalu Mokh Reza Anshari Balai Laboratorium Lingkungan, Dinas Lingkungan Hidup dan Kehutanan Provinsi Nusa Tenggara Barat

DOI:

https://doi.org/10.29408/kpj.v9i3.32897

Keywords:

estuari, konsentrasi emisi, polusi air, polusi udara, sistem pengukuran

Abstract

Kualitas udara di sekitaran area muara diindikasikan berhubungan dengan kualitas air muara tersebut. Di sisi lain, pengukuran kedua parameter ini belum banyak dilakukan secara simultan. Sejalan dengan latar belakang tersebut, penelitian ini bertujuan untuk mengembangkan sebuah sistem pengukuran kualitas air dan udara berbasis IoT melalui desain Kit-PEKAT bagi area estuari atau muara di Kabupaten Lombok Barat, NTB. Proses integrasi pengukuran berbasis sensor analog terkalibrasi, penambahan fitur IoT, dan sistem pemantauan yang ringkas dan real-time menjadikan nilai tambah dari sistem ini. Sistem Kit-PEKAT dirancang menggunakan tiga buah sensor, yakni sensor TDS (DF-Robot), sensor gas CO2 (DF-Robot), dan sensor PM2.5 (Winsen). Sensor tersebut dihubungkan ke sebuah mikrokontroller (AT-Mega2560 dan ESP8266) dan server ThingSpeak. Sistem ini dikalibrasi dan diuji, serta diimplementasikan secara langsung di area muara. Hasil pengukuran dan pengujian menunjukkan bahwa akurasi yang dihasilkan oleh ketiga sensor sebesar 96% hingga 99%, dengan tingkat kesalahan relatif <5%. Pengujian statistik menunjukkan tidak terdapat perbedaan yang signifikan antara pembanding dan alat yang dikembangkan (kit-PEKAT). Hasil penelitian menunjukkan bahwa kit-PEKAT dapat digunakan untuk mengalirkan air dan udara secara konsisten, dengan waktu pengisian dan pengosongan sebesar 14,09±0,15 s. Pengujian kualitas udara dan air di lokasi muara menunjukkan terdapat hubungan linear ekstrim antara konsentrasi TDS dalam air dengan kualitas udara. Semakin besar konsentrasi TDS, maka semakin besar pula konsentrasi CO2 dan PM2.5.

References

Ayat, Y., El Moussati, A., & Mir, I. (2024). Revolutionizing Air Quality Monitoring: IoT-Enabled E-Noses and Low-Power Devices. IFAC-PapersOnLine, 58(13), 829–834. https://doi.org/10.1016/j.ifacol.2024.07.585

Chen, B., Tan, E., Zou, W., Han, L. L., Tian, L., & Kao, S. J. (2024). The external/internal sources and sinks of greenhouse gases (CO2, CH4, N2O) in the Pearl River Estuary and adjacent coastal waters in summer. Water Research, 249(November 2023), 120913. https://doi.org/10.1016/j.watres.2023.120913

Chen, G., Bai, J., Bi, C., Wang, Y., & Cui, B. (2023). Global greenhouse gas emissions from aquaculture: a bibliometric analysis. Agriculture, Ecosystems and Environment, 348(January), 108405. https://doi.org/10.1016/j.agee.2023.108405

Choi, M., & Ying, Q. (2025). Modeling the impacts of open biomass burning on regional O3 and PM2.5 in Southeast Asia considering light absorption and photochemical bleaching of Brown carbon. Atmospheric Environment, 342, 120942. https://doi.org/10.1016/j.atmosenv.2024.120942

Dariz, M. A., Marmentini, J. É., Colpani, G. L., Fiori, M. A., Recco, A. A. C., Alves, O. C., Fidelis, M. Z., & Brackmann, R. (2025). Exploring the unique physicochemical properties of Fe3O4@TiO2-Nd magnetic nanocomposites synthesized via hydrothermal coprecipitation. Journal of Magnetism and Magnetic Materials, 614. https://doi.org/10.1016/j.jmmm.2024.172752

Hadi, K. A., Wardoyo, A. Y. P., Naba, A., Juswono, U. P., & Budianto, A. (2021). Investigation of burning rate on particulate matter emission factor of rice straw burning (case study in Lombok Island, Indonesia). Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1811/1/012051

Heaviside, C., Witham, C., Vardoulakis, S., & et al. (2021). Potential health impacts from sulphur dioxide and sulphate exposure in the UK resulting from an Icelandic effusive volcanic eruption. Science of the Total Environment, 774, 145549. https://doi.org/10.1016/j.scitotenv.2021.145549

Ho, L., Barthel, M., Panique-Casso, D., Vermeulen, K., Bruneel, S., Liu, X., Bodé, S., Six, J., Boeckx, P., & Goethals, P. (2023). Impact of salinity gradient, water pollution and land use types on greenhouse gas emissions from an urbanized estuary. Environmental Pollution, 336(September). https://doi.org/10.1016/j.envpol.2023.122500

Jang, E., Park, K. T., Yoon, Y. J., Lee, K., Traversi, R., Becagli, S., Severi, M., Tunved, P., Krejci, R., Kim, T. W., Fernandez, R. P., Saiz-Lopez, A., & Lee, B. Y. (2025). Synergistic effects of oceanic dimethyl sulfide emissions and atmospheric oxidants on new particle formation in the Arctic. Environmental Research, 282(April), 122024. https://doi.org/10.1016/j.envres.2025.122024

Khan, M. A., Kumar, S., Roy, R., Prakash, S., Lotliker, A. A., & Baliarsingh, S. K. (2023). Effects of tidal cycle on greenhouse gases emissions from a tropical estuary. Marine Pollution Bulletin, 189(April 2022), 114733. https://doi.org/10.1016/j.marpolbul.2023.114733

Kumar, A., Singh, D., Kumar, K., Singh, B. B., & Jain, V. K. (2018). Distribution of VOCs in urban and rural atmospheres of subtropical India: Temporal variation, source attribution, ratios, OFP and risk assessment. Science of the Total Environment, 613–614, 492–501. https://doi.org/10.1016/j.scitotenv.2017.09.096

Lalchandani, V., Tripathi, S. N., Srivastava, D., Mishra, G., Thamban, N. M., Mishra, S., Tripathi, N., Wang, L., Prévôt, A. S. H., Bhowmik, H. S., Dixit, K., Sahu, L. K., & Gunthe, S. S. (2025). Semi-volatile oxygenated organics and ammonium chloride increasing sub-micron aerosol hygroscopicity, cloud condensation nuclei and PM1 mass in the Delhi region. Atmospheric Environment, 358(March). https://doi.org/10.1016/j.atmosenv.2025.121356

Pacheco, H., Díaz-López, S., Jarre, E., Pacheco, H., Méndez, W., & Zamora-Ledezma, E. (2020). NO2 levels after the COVID-19 lockdown in Ecuador: A trade-off between environment and human health. Urban Climate, 34(2), 100674. https://doi.org/10.1016/j.uclim.2020.100674

Wardoyo, A. Y. P., Noor, J. A. E., Elbers, G., Schmitz, S., Flaig, S. T., & Budianto, A. (2020). Characterizing volcanic ash elements from the 2015 eruptions of bromo and raung volcanoes, Indonesia. Polish Journal of Environmental Studies, 29(2), 1899–1907. https://doi.org/10.15244/pjoes/99101

Ye, J., Hu, Q., Gao, Q., Zhao, R., Su, W., Zhang, C., Wang, X., Li, Z., & Liu, C. (2025). Satellite remote sensing capturing intense ozone production over marginal seas in East Asia: evident influence on air quality in coastal cities. Atmospheric Environment, 360(July), 121448. https://doi.org/10.1016/j.atmosenv.2025.121448

Yonis, S., Kahkashan, S., Adelman, D., & Lohmann, R. (2023). Transects of polycyclic aromatic hydrocarbons and organochlorine pesticides in an urban estuary using passive samplers. Marine Pollution Bulletin, 197(May), 115768. https://doi.org/10.1016/j.marpolbul.2023.115768

Zhang, C., Wang, N., Lv, S., Yan, S., Tian, R., Wang, S., Wang, B., Yan, J., & Zhang, M. (2025). DMS behaviors in pen culture of Sinonovacula constricta in Longhai, China. Marine Environmental Research, 203(September 2024), 106826. https://doi.org/10.1016/j.marenvres.2024.106826

Downloads

Published

2025-12-10