Pengaruh Variasi Suhu Kalsinasi terhadap Struktur Kristal dan Sifat Mekanik Hidroksiapatit dari Limbah Cangkang Kerang Mutiara
DOI:
https://doi.org/10.29408/kpj.v9i3.33013Keywords:
Hydroxyapatite, Pinctada maxima, Compressive strengthAbstract
Hydroxyapatite (HAp is widely known as a promising biomaterial because its chemical composition closely resembles that of human bone and teeth, making it suitable for biomedical uses such as bone tissue engineering and implant materials. This study explores how variations in calcination temperature (750–950 °C) affect the crystal structure and mechanical properties of HAp synthesized from Pinctada maxima shells—a calcium-rich biogenic waste. The crystal structure was analyzed using X-ray Diffraction (XRD), while mechanical properties were evaluated using a Tensilon testing machine. The XRD results showed a phase shift from the dominance of tricalcium phosphate (TCP) at low temperatures towards the dominant HAp phase at high calcination temperatures with improved crystallinity from 33.94% to 45.89%. The mechanical tests showed compressive strength values of 0.1981 to 0.3148 MPa and the elastic modulus of 14.941 to 26.721 MPa. The higher calcination temperature tends to increase the cristallinity, density, and compressive strength, but reduced elasticity due to a stiffer internal structure. These results indicate that changes in crystal structure have a direct effect on increasing the compressive strength and stiffnes of the material. This study confirms the potential ofPinctada maxima shells as a sustainable calcium source for producing high-quality hydroxyapatite suitable for biomedical applications.
References
Baino, F., Schwentenwein, M., & Verné, E. (2022). Modelling the Mechanical Properties of Hydroxyapatite Scaffolds Produced by Digital Light Processing-Based Vat Photopolymerization. Ceramics, 5(3), 593–600. https://doi.org/10.3390/ceramics5030044
Bakan, F. (2019). A systematic study of the effect of pH on the initialization of Ca-deficient hydroxyapatite to β- TCP nanoparticles. Materials, 12(3). https://doi.org/10.3390/ma12030354
Budianto, A., Rubi’ah, S., Kurniawidi, D. W., Alaydrus, A. T., & Rahayu, S. (2025). Sintesis Perovskite (CaTiO3) dari Limbah Cangkang Kerang Mutiara (Pinctada maxima): Solusi Ramah Lingkungan untuk Teknologi Semikonduktor. Jukung Jurnal Teknik Lingkungan, 11(1), 58–68.
Ingole, V. H., Ghule, S. S., Vuherer, T., Kokol, V., & Ghule, A. V. (2021). Mechanical properties of differently nanostructured and high-pressure compressed hydroxyapatite-based materials for bone tissue regeneration. Minerals, 11(12). https://doi.org/10.3390/min11121390
Irhamni, Juliana, E., Zulfalina, Fauzi, Isa, M., & Jalil, Z. (2024). Pemanfaatan limbah cangkang tiram (Crassostrea gigas) sebagai sumber kalsium pada sintesis hidroksiapatit. Jurnal Geutthèë: Penelitian Multidisiplin (Multidiciplinary Research), 7(2), 96–104.
Kamal, M. M., Mahmud, S., Plabon, I. A., Kader, M. A., & Islam, M. N. (2024). Effects of sintering temperature on the physical, structural, mechanical and antimicrobial properties of extracted hydroxyapatite ceramics from Anabas testudineus bone and head scull for biomedical applications. Results in Materials, 22. https://doi.org/10.1016/j.rinma.2024.100590
Kurniawan, F. L., Amalia, F., Komala, O. N., & Octarina, O. (2025). Perbandingan Derajat Kristalinitas dan Konsentrasi Ion Kalsium Hidroksiapatit Tulang Sapi dengan Produk Komersial EthOss®. E-GiGi, 13(2), 406–410. https://doi.org/10.35790/eg.v13i2.61290
Nurrahmi, S., Jumardin, J., & Fuadi, N. (2024). Sintesis dan Karakterisasi Sifat Struktur Hidroksiapatit dari Cangkang Sotong dengan Metode X-Ray Diffraction. JPF (Jurnal Pendidikan Fisika) Universitas Islam Negeri Alauddin Makassar, 12(2), 128–138. https://doi.org/10.24252/jpf.v12i2.50635
Oladele, I. O., Falana, S. O., Akpan, V. A., Adenle, S. A., & Onuh, L. N. (2025). Development of clam shell derived hydroxyapatite reinforced epoxy based biomedical implant. Discover Chemistry, 2(1). https://doi.org/10.1007/s44371-025-00139-6
Purnaning, D., Hurnah, Taufik, A., Rahayu, S., Kurniawidi, D. W., & Al Hadi, K. (2025). Indonesian Physical Review Influence of Composition and Lyophilization Time on Physical Properties of HA/Cs/Coll/ Hydroxypropyl Methylcellulose Biocomposites for Bone Scaffolds. Indonesian Physical Review, 8(2), 616–628. https://doi.org/10.29303/ip
Radulescu, D. E., Neacsu, I. A., Grumezescu, A. M., & Andronescu, E. (2022). Novel Trends into the Development of Natural Hydroxyapatite-Based Polymeric Composites for Bone Tissue Engineering. In Polymers (Vol. 14, Issue 5). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/polym14050899
Raflyani, F., Wibawa, T., & Sadi. (2021). Penentuan Komposisi Hidroksiapatit-Alginat-Zinc terhadap Kuat Tekan Bone Scaffold dengan Metode Taguchi. Seminar Nasional Teknik Dan Manajemen Industri Dan Call for Paper, 1.
Syam, S., Mattulada, I. K., Asmah, N., Lauddin, T., Yasmin, Y., & Ilmu Kesehatan Gigi Masyarakat Fakultas Kedokteran Gigi, B. (2025). Karakterisasi Hidroksiapatit Tulang Ikan Cakalang (Katsuwonus pelamis) Kalsinasi 5 Jam dengan Analisis XRD (X-Ray Diffraction) Hydroxyapatite Characterization of Cakalang Fish Bone (Katsuwonus pelamis) with 5-hour Calcination and X-ray Diffraction Analysis. 13(2), 376–381. https://doi.org/10.35790/eg.v13i2
Trzaskowska, M., Vivcharenko, V., & Przekora, A. (2023). The Impact of Hydroxyapatite Sintering Temperature on Its Microstructural, Mechanical, and Biological Properties. In International Journal of Molecular Sciences (Vol. 24, Issue 6). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ijms24065083
Twinprai, N., Sutthi, R., Ngaonee, P., Chaikool, P., Sookto, T., Twinprai, P., Mutoh, Y., Chindaprasirt, P., & Laonapakul, T. (2024). Effects of hydroxyapatite content on cytotoxicity, bioactivity and strength of metakaolin/hydroxyapatite composites. Arabian Journal of Chemistry, 17(9). https://doi.org/10.1016/j.arabjc.2024.105878
Wisesa, R. S., Ismail, R., & Bayuseno, A. P. (2023). Pengaruh Komposisi terhadap Karakterisasi Porous Hidroksiapatit yang disintesis menggunakan Metode Polyurethane Sponge Replication. In Jurnal Teknik Mesin S-1 (Vol. 11, Issue 3).
Wu, S. C., Hsu, H. C., Liu, M. Y., & Ho, W. F. (2024). Phase Transformation and Mechanical Optimization of Eggshell-Derived Hydroxyapatite across a Wide Sintering Temperature Range. Materials, 17(16). https://doi.org/10.3390/ma17164062
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Kappa Journal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini menjadi tanggungjawab penuh penulis. Jurnal Kappa memberikan akses terbuka terhadap siapapun agar informasi dan temuan pada artikel tersebut bermanfaat bagi semua orang. Jurnal Kappa dapat diakses dan diunduh secara gratis, tanpa dipungut biaya, sesuai dengan lisensi creative commons yang digunakan


