Visualization of Probability Distribution for a Particle in a One-Dimensional Box using Computational Simulation
DOI:
https://doi.org/10.29408/kpj.v9i3.33120Keywords:
one-dimensional box, Schrödinger Equation, probability distribution, computational simulationAbstract
This study presents a computational visualization of the stationary states of a particle confined in a one-dimensional infinite potential well, formulated entirely from analytical solutions and implemented in a cloud-based Python environment. Using Google Colab, wave functions, probability densities, and nodal structures were generated for several quantum numbers to illustrate fundamental quantum-mechanical characteristics, including energy quantization, spatial oscillatory behavior, and the emergence of classical correspondence at higher energy levels. The resulting visualizations offer a clear representation of the spatial distribution of quantum states, thereby supporting a conceptual understanding of the underlying analytical model. As a novelty, this study introduces a Colab-based analytical–numerical combination as a visualization medium, a format rarely explored in depth in quantum-well learning contexts. Beyond instructional applications, the modeled system accurately reflects the essential physical behavior of electrons in semiconductor quantum wells, where quantized subband energies and wave-function profiles significantly influence optical and electronic transitions. These findings demonstrate that analytically derived quantum models, when integrated with computational visualization, can effectively enhance conceptual comprehension while offering insight into the fundamental principles governing modern optoelectronic structures.
References
Ahmed, S. Z., Jensen, J. H. M., Weidner, C. A., Sørensen, J. J., Mudrich, M., & Sherson, J. F. (2021). Quantum composer: A programmable quantum visualization and simulation tool for education and research. American Journal of Physics, 89(3), 307-316. https://doi.org/10.1119/10.0003396
Ahmed, S. Z., Weidner, C. A., Jensen, J. H., Sherson, J. F., & Lewandowski, H. J. (2022). Student use of a quantum simulation and visualization tool. European Journal of Physics, 43(6), 065703. Retrieved from https://iopscience.iop.org/article/10.1088/1361-6404/ac93c7/meta
Atkins, P., & Friedman, R. (2011). Molecular Quantum Mechanics (5th ed.). Oxford, UK: Oxford University Press.
Belloni, M., & Robinett, R. W. (2014). The infinite well and Dirac delta function potentials as pedagogical, mathematical and physical models in quantum mechanics. Physics Reports, 540(2), 25-122. https://doi.org/10.1016/j.physrep.2014.02.005
Chulhai, D. V. (2023). Quantum Particle-in-a-Sandbox: A video game that explores the time-dependent wave function for any arbitrary one-dimensional potential. Journal of Chemical Education, 101(3), 1286-1291. https://doi.org/10.1021/acs.jchemed.3c00774
Griffiths, D. J. (2005). Introduction to Quantum Mechanics (2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall.
Halpern, A. M., Ge, Y., & Glendening, E. D. (2022). Visualizing Solutions of the One-Dimensional Schrödinger Equation Using a Finite Difference Method. Journal of Chemical Education, 99(8), 3053-3060. https://doi.org/10.1021/acs.jchemed.2c00557
Kohnle, A., Ainsworth, S. E., & Passante, G. (2020). Sketching to support visual learning with interactive tutorials. Physical Review Physics Education Research, 16(2), 020139. https://doi.org/10.1103/PhysRevPhysEducRes.16.020139
Kohnle, A., Benfield, C., Hahner, G., & Paetkau, M. (2017). Interactive simulations to support quantum mechanics instruction for chemistry students. Journal of Chemical Education, 94(3), 392-397. https://doi.org/10.1021/acs.jchemed.6b00459
Küchemann, S., Ubben, M., Dzsotjan, D., Mukhametov, S., Weidner, C. A., Qerimi, L., ... & Sherson, J. F. (2023). The impact of an interactive visualization and simulation tool on learning quantum physics: Results of an eye-tracking study. arXiv preprint arXiv:2302.06286. Retrieved from https://arxiv.org/abs/2302.06286
Marzban, B., Stange, D., Rainko, D., Ikonic, Z., Buca, D., & Witzens, J. (2021). Modeling of a SiGeSn quantum well laser. Photonics Research, 9(7), 1234–1243. https://doi.org/10.1364/PRJ.9.7.1234
Migdał, P., Jankiewicz, K., Grabarz, P., Decaroli, C., & Cochin, P. (2022). Visualizing quantum mechanics in an interactive simulation–virtual lab by quantum flytrap. Optical Engineering, 61(8), 081808-081808. https://doi.org/10.1117/1.OE.61.8.081808
Nita, L., Mazzoli Smith, L., Chancellor, N., & Cramman, H. (2023). The challenge and opportunities of quantum literacy for future education and transdisciplinary problem-solving. Research in Science & Technological Education, 41(2), 564-580. https://doi.org/10.1080/02635143.2021.1920905
Partanen, L. (2018). Student-centred active learning approaches to teaching quantum chemistry and spectroscopy: quantitative results from a two-year action research study. Chemistry Education Research and Practice, 19(3), 885-904. https://doi.org/10.1039/C8RP00074C
Pollock, S., Passante, G., & Sadaghiani, H. (2023). Adaptable research-based materials for teaching quantum mechanics. American Journal of Physics, 91(1), 40-47. https://doi.org/10.1119/5.0109124
Persichetti, L., Montanari, M., Ciano, C., Di Gaspare, L., Ortolani, M., Baldassarre, L., Zoellner, M., Mukherjee, S., Moutanabbir, O., Capellini, G., Virgilio, M., & De Seta, M. (2020). Intersubband Transition Engineering in the Conduction Band of Asymmetric Coupled Ge/SiGe Quantum Wells. Crystals, 10(3), 179. https://doi.org/10.3390/cryst10030179
Rydin, Y. L., Mattsson, K., Werpers, J., & Sjöqvist, E. (2021). High-order finite difference method for the Schrödinger equation on deforming domains. Journal of Computational Physics, 443, 110530. https://doi.org/10.1016/j.jcp.2021.110530
Susila, A. B., Suhendar, H., & Fahdiran, R. (2025). Cloud-Based Teaching Tool of AlCu Band Gap Simulations Using GPAW: A Python-Driven Approach for Undergraduate Student. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 11(1), 53-62. https://doi.org/10.21009/1.11105
Vallejo, W., Diaz-Uribe, C., & Fajardo, C. (2022). Google colab and virtual simulations: practical e-learning tools to support the teaching of thermodynamics and to introduce coding to students. ACS omega, 7(8), 7421-7429. https://doi.org/10.1021/acsomega.2c00362
Von den Driesch, N., Stange, D., Rainko, D., Wirths, S., Ikonic, Z., & Buca, D. (2018). Advanced GeSn/SiGeSn Group IV heterostructure lasers. Advanced Science, 5(10), 1700955. https://doi.org/10.1002/advs.201700955
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Kappa Journal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini menjadi tanggungjawab penuh penulis. Jurnal Kappa memberikan akses terbuka terhadap siapapun agar informasi dan temuan pada artikel tersebut bermanfaat bagi semua orang. Jurnal Kappa dapat diakses dan diunduh secara gratis, tanpa dipungut biaya, sesuai dengan lisensi creative commons yang digunakan


