Visualization of Probability Distribution for a Particle in a One-Dimensional Box using Computational Simulation

Authors

  • Zahra Ayanna Firmansyah Sriwijaya University
  • Nur Kayla Lekati Sriwijaya University
  • Aisyah Veronika Sriwijaya University
  • Hamdi Akhsan Sriwijaya University
  • Melly Ariska Sriwijaya University

DOI:

https://doi.org/10.29408/kpj.v9i3.33120

Keywords:

one-dimensional box, Schrödinger Equation, probability distribution, computational simulation

Abstract

This study presents a computational visualization of the stationary states of a particle confined in a one-dimensional infinite potential well, formulated entirely from analytical solutions and implemented in a cloud-based Python environment. Using Google Colab, wave functions, probability densities, and nodal structures were generated for several quantum numbers to illustrate fundamental quantum-mechanical characteristics, including energy quantization, spatial oscillatory behavior, and the emergence of classical correspondence at higher energy levels. The resulting visualizations offer a clear representation of the spatial distribution of quantum states, thereby supporting a conceptual understanding of the underlying analytical model. As a novelty, this study introduces a Colab-based analytical–numerical combination as a visualization medium, a format rarely explored in depth in quantum-well learning contexts. Beyond instructional applications, the modeled system accurately reflects the essential physical behavior of electrons in semiconductor quantum wells, where quantized subband energies and wave-function profiles significantly influence optical and electronic transitions.  These findings demonstrate that analytically derived quantum models, when integrated with computational visualization, can effectively enhance conceptual comprehension while offering insight into the fundamental principles governing modern optoelectronic structures.

References

Ahmed, S. Z., Jensen, J. H. M., Weidner, C. A., Sørensen, J. J., Mudrich, M., & Sherson, J. F. (2021). Quantum composer: A programmable quantum visualization and simulation tool for education and research. American Journal of Physics, 89(3), 307-316. https://doi.org/10.1119/10.0003396

Ahmed, S. Z., Weidner, C. A., Jensen, J. H., Sherson, J. F., & Lewandowski, H. J. (2022). Student use of a quantum simulation and visualization tool. European Journal of Physics, 43(6), 065703. Retrieved from https://iopscience.iop.org/article/10.1088/1361-6404/ac93c7/meta

Atkins, P., & Friedman, R. (2011). Molecular Quantum Mechanics (5th ed.). Oxford, UK: Oxford University Press.

Belloni, M., & Robinett, R. W. (2014). The infinite well and Dirac delta function potentials as pedagogical, mathematical and physical models in quantum mechanics. Physics Reports, 540(2), 25-122. https://doi.org/10.1016/j.physrep.2014.02.005

Chulhai, D. V. (2023). Quantum Particle-in-a-Sandbox: A video game that explores the time-dependent wave function for any arbitrary one-dimensional potential. Journal of Chemical Education, 101(3), 1286-1291. https://doi.org/10.1021/acs.jchemed.3c00774

Griffiths, D. J. (2005). Introduction to Quantum Mechanics (2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall.

Halpern, A. M., Ge, Y., & Glendening, E. D. (2022). Visualizing Solutions of the One-Dimensional Schrödinger Equation Using a Finite Difference Method. Journal of Chemical Education, 99(8), 3053-3060. https://doi.org/10.1021/acs.jchemed.2c00557

Kohnle, A., Ainsworth, S. E., & Passante, G. (2020). Sketching to support visual learning with interactive tutorials. Physical Review Physics Education Research, 16(2), 020139. https://doi.org/10.1103/PhysRevPhysEducRes.16.020139

Kohnle, A., Benfield, C., Hahner, G., & Paetkau, M. (2017). Interactive simulations to support quantum mechanics instruction for chemistry students. Journal of Chemical Education, 94(3), 392-397. https://doi.org/10.1021/acs.jchemed.6b00459

Küchemann, S., Ubben, M., Dzsotjan, D., Mukhametov, S., Weidner, C. A., Qerimi, L., ... & Sherson, J. F. (2023). The impact of an interactive visualization and simulation tool on learning quantum physics: Results of an eye-tracking study. arXiv preprint arXiv:2302.06286. Retrieved from https://arxiv.org/abs/2302.06286

Marzban, B., Stange, D., Rainko, D., Ikonic, Z., Buca, D., & Witzens, J. (2021). Modeling of a SiGeSn quantum well laser. Photonics Research, 9(7), 1234–1243. https://doi.org/10.1364/PRJ.9.7.1234

Migdał, P., Jankiewicz, K., Grabarz, P., Decaroli, C., & Cochin, P. (2022). Visualizing quantum mechanics in an interactive simulation–virtual lab by quantum flytrap. Optical Engineering, 61(8), 081808-081808. https://doi.org/10.1117/1.OE.61.8.081808

Nita, L., Mazzoli Smith, L., Chancellor, N., & Cramman, H. (2023). The challenge and opportunities of quantum literacy for future education and transdisciplinary problem-solving. Research in Science & Technological Education, 41(2), 564-580. https://doi.org/10.1080/02635143.2021.1920905

Partanen, L. (2018). Student-centred active learning approaches to teaching quantum chemistry and spectroscopy: quantitative results from a two-year action research study. Chemistry Education Research and Practice, 19(3), 885-904. https://doi.org/10.1039/C8RP00074C

Pollock, S., Passante, G., & Sadaghiani, H. (2023). Adaptable research-based materials for teaching quantum mechanics. American Journal of Physics, 91(1), 40-47. https://doi.org/10.1119/5.0109124

Persichetti, L., Montanari, M., Ciano, C., Di Gaspare, L., Ortolani, M., Baldassarre, L., Zoellner, M., Mukherjee, S., Moutanabbir, O., Capellini, G., Virgilio, M., & De Seta, M. (2020). Intersubband Transition Engineering in the Conduction Band of Asymmetric Coupled Ge/SiGe Quantum Wells. Crystals, 10(3), 179. https://doi.org/10.3390/cryst10030179

Rydin, Y. L., Mattsson, K., Werpers, J., & Sjöqvist, E. (2021). High-order finite difference method for the Schrödinger equation on deforming domains. Journal of Computational Physics, 443, 110530. https://doi.org/10.1016/j.jcp.2021.110530

Susila, A. B., Suhendar, H., & Fahdiran, R. (2025). Cloud-Based Teaching Tool of AlCu Band Gap Simulations Using GPAW: A Python-Driven Approach for Undergraduate Student. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 11(1), 53-62. https://doi.org/10.21009/1.11105

Vallejo, W., Diaz-Uribe, C., & Fajardo, C. (2022). Google colab and virtual simulations: practical e-learning tools to support the teaching of thermodynamics and to introduce coding to students. ACS omega, 7(8), 7421-7429. https://doi.org/10.1021/acsomega.2c00362

Von den Driesch, N., Stange, D., Rainko, D., Wirths, S., Ikonic, Z., & Buca, D. (2018). Advanced GeSn/SiGeSn Group IV heterostructure lasers. Advanced Science, 5(10), 1700955. https://doi.org/10.1002/advs.201700955

Downloads

Published

2025-12-24

Issue

Section

Articles