Computational Physics as a Unifying Framework for the Natural Sciences: Bridging Disciplines through Numerical Modeling and Simulation
DOI:
https://doi.org/10.29408/kpj.v9i3.33489Keywords:
computational physics, numerical modeling, interdisciplinary science, simulation, computational thinkingAbstract
The collaboration between computation, theory, and experiment has been a game-changer for academia. This work considers computational physics as an integrative discipline across the natural sciences and utilizes a narrative literature review organized with a conceptual and methodological synthesis. Using peer-reviewed literature from physics, chemistry, biology, and environmental science, as well as science education, the work identifies common interdisciplinary numerical approaches, computational techniques, and algorithms used in modeling and simulation. The research demonstrates that while computational practices in research and education have evolved separately across various fields, the core techniques that have been and continue to be most important for modeling across many fields are those rooted in computational physics: finite difference, finite element, and finite volume methods. Furthermore, the synthesis demonstrates that the combination of modeling in physics and the use of machine learning and other data-driven methods, as well as the importance of computational thinking, are essential for interdisciplinary science and science education. Model formulation, discretization, numerical approximation, algorithm implementation, and data visualization are core components of a generalized computational modeling framework. While this study has provided a unified conceptual framework for multiple academic domains and interdisciplinary curriculum development, its reliance on previously established literature, coupled with the lack of primary empirical findings or simulations, is a notable limitation. This study frames the discipline of computational physics as a methodology, rather than as a field of study with clear boundaries.
References
Batı, K. (2021). Developing teachers’ computational thinking skills through teacher education programs. International Journal of Education in Mathematics, Science and Technology, 9(2), 370–390. https://doi.org/10.46328/ijemst.1352
Berk, G., & Gülcü, A. (2024). The effect of computer-supported STEM applications on secondary students’ achievement and computational thinking skills. Participatory Educational Research, 11(4), 160–183. https://doi.org/10.17275/per.24.54.11.4
Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., & Brown, B. P. (2020). Dedalus: A flexible framework for numerical simulations with spectral methods. Physical Review Research, 2(2), Article 023068. https://doi.org/10.1103/PhysRevResearch.2.023068
Cao, X., & Tian, P. (2021). “Dividing and conquering” and “caching” in molecular modeling. International Journal of Molecular Sciences, 22(9), 5053. https://doi.org/10.3390/ijms22095053
Dang, G., Liu, S., Guo, T., Duan, J., & Li, X. (2022). Direct numerical simulation of compressible turbulence accelerated by graphics processing units: An open-source high-accuracy accelerated computational fluid dynamics software. Physics of Fluids, 34(12), Article 125108. https://doi.org/10.1063/5.0127684
Dhakal, M., Singh, B., & Azad, R. (2025). Mechanistic models of virus–bacteria co-infections in humans: A systematic review of methods and assumptions. Pathogens, 14(8), 830. https://doi.org/10.3390/pathogens14080830
Diachenko-Bohun, M., Homlia, L., Shkura, T., Rokotianska, V., & Orlovskyi, O. (2023). Interdisciplinarity as an innovative approach to teaching natural sciences. The Sources of Pedagogical Skills, 32, 100–106. https://doi.org/10.33989/2075-146x.2023.32.292646
Duignan, T. (2024). The potential of neural network potentials. ACS Physical Chemistry Au, 4(3), 232–241. https://doi.org/10.1021/acsphyschemau.4c00004
Eisenbraun, B., Ho, A., Meyer, P., & Sliz, P. (2025). Accelerating structural dynamics through integrated research informatics. Structural Dynamics, 12(4). https://doi.org/10.1063/4.0000759
Gökcan, H., & Isayev, O. (2021). Learning molecular potentials with neural networks. Wiley Interdisciplinary Reviews: Computational Molecular Science, 12(2), e1564. https://doi.org/10.1002/wcms.1564
Gunckel, K. L., Covitt, B. A., Berkowitz, A. R., Caplan, B., & Moore, J. (2022). Computational thinking for using models of water flow in environmental systems. Journal of Research in Science Teaching, 59(7), 1169–1203. https://doi.org/10.1002/tea.21755
Hou, C., & Behdinan, K. (2022). Dimensionality reduction in surrogate modeling: A review of combined methods. Data Science and Engineering, 7(4), 402–427. https://doi.org/10.1007/s41019-022-00193-5
Kamiscioglu, C. (2023). Modeling approach in particle physics. Sınırsız Eğitim ve Araştırma Dergisi, 8(3), 400–433. https://doi.org/10.29250/sead.1359657
Lee, H., Wu, T., Lin, C., Wang, W., & Huang, Y. (2023). Integrating computational thinking into scaffolding learning. Journal of Educational Computing Research, 62(2), 211–247. https://doi.org/10.1177/07356331231211916
Lehtola, S. (2023). A call to arms: Making the case for more reusable libraries. The Journal of Chemical Physics, 159(18). https://doi.org/10.1063/5.0175165
Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2020). On computational thinking and STEM education. Journal for STEM Education Research, 3(2), 147–166. https://doi.org/10.1007/s41979-020-00044-w
Marian, M., & Tremmel, S. (2023). Physics-informed machine learning—An emerging trend in tribology. Lubricants, 11(11), 463. https://doi.org/10.3390/lubricants11110463
Niazai, S., Rahimzai, A., & Atifnigar, H. (2023). Applications of MATLAB in natural sciences: A comprehensive review. European Journal of Theoretical and Applied Sciences, 1(5), 1006–1015. https://doi.org/10.59324/ejtas.2023.1(5).87
Ningsih, S., Ridlo, Z., Rusdianto, R., & Dewi, J. (2024). Implementation of science module integrated with Google Colaboratory to improve students’ computational thinking skill: Is it effective? Pedagogi: Jurnal Ilmu Pendidikan, 24(2). https://doi.org/10.24036/pedagogi.v24i2.2287
Niu, Z., Zhao, W., Wu, B., Wang, H., Lin, W., Pinfield, V., & Xuan, J. (2023). Π-learning: A performance-informed framework for microstructural electrode design. Advanced Energy Materials, 13(17), Article 2300244. https://doi.org/10.1002/aenm.202300244
Planella, F., Ai, W., Boyce, A., Ghosh, A., Korotkin, I., Sahu, S., & Richardson, G. (2022). A continuum of physics-based lithium-ion battery models reviewed. Progress in Energy, 4(4), 042003. https://doi.org/10.1088/2516-1083/ac7d31
Rajagopal, V., Arumugam, S., Hunter, P. J., Khadangi, A., Chung, J., & Pan, M. (2022). The cell physiome: What do we need in a computational physiology framework for predicting single-cell biology? Annual Review of Biomedical Data Science, 5(1), 341–366. https://doi.org/10.1146/annurev-biodatasci-072018-021246
Raja, S., Enayaba, O., Ajiboye, A., Damoye, T., Ogundeji, I., & Agbams, P. (2024). A review of machine learning techniques applications in environmental science. TIJSRAT, 6(9). https://doi.org/10.70382/tijsrat.v06i9.002
Rathod, C. (2024). Numerical solutions of partial differential equations. Shodhkosh Journal of Visual and Performing Arts, 5(5), Article 3581. https://doi.org/10.29121/shodhkosh.v5.i5.2024.3581
Rivadeneira, E., & Toledo, L. (2024). Teacher training for computational thinking integration in science education. Education and Information Technologies, 29(1), 489–508. https://doi.org/10.1007/s10639-023-11987-3
Seriani, G., & Oliveira, S. (2020). Numerical modeling of mechanical wave propagation. La Rivista del Nuovo Cimento, 43(9), 459–514. https://doi.org/10.1007/s40766-020-00009-0
Skwame, Y., Zirra, D., & Sabo, J. (2024). The numerical application of dynamic problems involving mass in motion governed by higher-order oscillatory differential equations. Physical Science International Journal, 28(5), 8–31. https://doi.org/10.9734/psij/2024/v28i5845
Subekti, D., Latifah, S., Anugrah, A., Fitri, M., Makbuloh, D., Subandi, S., & Islam, M. (2024). Project-based model in physics learning: The influence on computational thinking skills. E3S Web of Conferences, 482, 04005. https://doi.org/10.1051/e3sconf/202448204005
Trilles, S., & Granell, C. (2020). Advancing pre-university students’ computational thinking skills. Computer Applications in Engineering Education, 28(6), 1490–1502. https://doi.org/10.1002/cae.22319
Wang, J., Liu, X., & Zhou, Y. (2024). Application of wavelet methods in computational physics. Annalen der Physik, 536(5), Article 2300461. https://doi.org/10.1002/andp.202300461
Wang, M., Peng, Y., & Liu, Y. (2020). Contrasting aerosol effects on long-wave cloud forcing in Southeast Asia and the Amazon simulated with Community Atmosphere Model version 5.3. Journal of Geophysical Research: Atmospheres, 125(24), e2020JD032380. https://doi.org/10.1029/2020JD032380
Whalen, M. (2025). A finite difference approach and error estimate for the two-dimensional Poisson equation with Dirichlet boundary conditions. American Journal of Undergraduate Research, 22, 35–48. https://doi.org/10.33697/ajur.2025.140
Wu, Z., Wang, H., He, C., Zhang, B., Xu, T., & Chen, Q. (2023). The application of physics-informed machine learning in multiphysics modeling in chemical engineering. Industrial & Engineering Chemistry Research, 62(44), 18178–18204. https://doi.org/10.1021/acs.iecr.3c02383
Yokuş, E., & Kahramanoğlu, R. (2022). An overview of computational thinking. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 10(1), 157–173. https://doi.org/10.18506/anemon.1033403
Yusufi, B., Kapelan, Z., & Mehta, D. (2025). Advances in modeling the flow of Herschel–Bulkley fluids in pipes: A review. Physics of Fluids, 37(2), Article 021701. https://doi.org/10.1063/5.0252248
Zohbi, G., Pilotti, M., Barghout, K., El-Moussa, O., & Abdelsalam, H. (2022). Lessons learned from the pandemic for learning physics. Journal of Computer Assisted Learning, 39(2), 591–602. https://doi.org/10.1111/jcal.12768
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Kappa Journal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Semua tulisan pada jurnal ini menjadi tanggungjawab penuh penulis. Jurnal Kappa memberikan akses terbuka terhadap siapapun agar informasi dan temuan pada artikel tersebut bermanfaat bagi semua orang. Jurnal Kappa dapat diakses dan diunduh secara gratis, tanpa dipungut biaya, sesuai dengan lisensi creative commons yang digunakan


