Implementasi Algoritma K-Means Dengan Optimasi Elbow Untuk Pengelompokkan Kepuasan Konsumen Gen Z Dalam Berbelanja Online
DOI:
https://doi.org/10.29408/jprinter.v3i2.33217Keywords:
Consumer Satisfaction, Elbow, Gen Z, K-Means, TikTok ShopAbstract
The development of digital technology has driven the increasing trend of online shopping, especially among Gen Z who actively use social media such as TikTok Shop. Therefore, it is important for business actors to understand the consumer satisfaction window to improve marketing strategies and maintain consumer loyalty. This study aims to analyze the grouping of Gen Z consumer satisfaction in East Lombok in online shopping at TikTok Shop using the K-Means algorithm and with Elbow optimization to determine the optimal number of clusters. The data used in this study were obtained by distributing questionnaires to 507 Gen Z respondents in East Lombok in 2025, with six main variables: product quality, product price, delivery, ease of application, influencer influence, and overall satisfaction. The results of the analysis using Google Colab showed the formation of three main clusters: Cluster 1 with a high level of satisfaction of 169 respondents, Cluster 2 with a moderate level of satisfaction of 255 respondents, and Cluster 3 with a low level of satisfaction of 83 respondents. Each cluster has different characteristics in assessing satisfaction variables. This information can be used as a reference for business actors on TikTok Shop in developing more effective marketing strategies
References
[1] S. Putri, B. Sinulingga, M. Irwan, And P. Nasution, “Perkembangan Teknologi Informasi Dan Komunikasi Diera Digital : Perspektif Masa Depan,” Vol. 2, No. 12, Pp. 25–35, 2024.
[2] V. A. Abdullah, “Sosial Media Sebagai Pasar Bagi Masyarakat Modern,” J. Dakwah Tabligh, Vol. 18, No. 1, Pp. 116–130, 2018, [Online]. Available: Http://103.55.216.56/Index.Php/Tabligh/Article/View/2870
[3] Y. L. . Rehatalanit, “Peran E-Commerce Dalam Pengembangan Bisnis,” J. Teknol. Ind., Vol. 5, No. 0, Pp. 62–69, 2021, [Online]. Available: Https://Journal.Universitassuryadarma.Ac.Id/Index.Php/Jti/Article/View/764
[4] G. O. Report, “Digital 2025,” 2025.
[5] Erwin Permana, Dela Setia Cahyani, Famita Wijayanti, And Syamsurizal Syamsurizal, “Analisis Kepuasan Generasi Z Terhadap Layanan E-Commerce,” J. Ilm. Ekon., Vol. 1, No. 2, Pp. 337–355, 2024, Doi: 10.61132/Jieap.V1i2.312.
[6] F. D. Situmorang, R. Triana, Y. Sidabutar, And T. N. Ardana, “Analisi Pengaruh Aplikasi Tiktok ( Tiktok Shop ) Terhadap Kepuasan Konsumen Dalam Pembelian Online Melalui Promosi Influencer,” No. 2024, 2025.
[7] A. M. Nur, H. Bahtiar, And M. A. Jannah, “Infotek : Implementasi Algoritma K-Means Clustering Dalam Mengelompokkan Kepatuhan Wajib Pajak Bumi Dan Bangunan Dengan Optimasi Elbow Sebuah Negara Dikatakan Maju Jika Mampu Membangun Wilayah Dan Masyarakatnya,” Vol. 8, No. 1, 2025.
[8] R. Yuliani, “Infotek : ‘Penerapan Data Mining Untuk Mengcluster Data Penduduk Miskin Menggunakan Algoritma K- Means Di Dusun Bagik Endep Sukamulia Timur,’” Vol. 4, No. 1, Pp. 39–50, 2021.
[9] M. Qusyairi, Z. Hidayatullah, And A. Sandi, “Infotek : ‘Penerapan K-Means Clustering Dalam Pengelompokan Prestasi Siswa Dengan Optimasi Metode Elbow,’” Vol. 7, No. 2, Pp. 500–510, 2024.
[10] L. Mauliya, “Clustering Data Pasien Covid Berdasarkan Usia Dan Gejala Menggunakan Algoritma K-Means,” Vol. 6, No. 2, Pp. 443–452, 2023.
[11] A. M. Et Al. Nur, “Infotek: Penerapan Algoritma K-Means Clustering Dalam Mengelompokkan Smartphone Yang Rekomendasi Berdasarkan Spesifikasi,” Vol. 7, No. 2, Pp. 478–488, 2024.
[12] A. R. Falih Et Al., “Algoritma K-Mean Untuk Optimalisasi Model Clustering Data Penjualan Toko Online Di,” Vol. 9, No. 1, Pp. 1–11, 2025.
[13] A. Al Fahrozi, F. Insani, E. Budianita, And I. Afrianty, “Implementasi Algoritma K-Means Dalam Menentukan Clustering Pada Penilaian Kepuasan Pelanggan Di Badan Pelatihan Kesehatan Pekanbaru,” Indones. J. Innov. Multidisipliner Res., Vol. 1, No. 4, Pp. 474–492, 2023, Doi: 10.31004/Ijim.V1i4.53.
[14] Yahya, “Data Mining.” 2022.
[15] N. Wakhidah, “Clustering Menggunakan K-Means Algorithm ( K-Means Algorithm Clustering )”.
[16] M. Dr. Teddy Chandra, Se., M. Stefani Chandra, B.Bus.Com, And M. Layla Hafni, S, Se, Service Quality, Consumer Satisfaction, Dan Consumer Loyalty: Tinjauan Teoritis. 2020. [Online]. Available: Https://Ibtpi.Pelitaindonesia.Ac.Id/1.Artikel/86.Buku_Service_Quality_Compressed.Pdf
[17] L. Sekar Arum, Amira Zahrani, And N. A. Duha, “Karakteristik Generasi Z Dan Kesiapannya Dalam Menghadapi Bonus Demografi 2030,” Account. Student Res. J., Vol. 2, No. 1, Pp. 59–72, 2023, Doi: 10.62108/Asrj.V2i1.5812.
[18] K. Simanjuntak And R. P. Sari, “Analisis Sistem S-Commerce Pada Tiktok Shop Untuk Meningkatkan Daya Saing Menggunakan Metode Swot,” J. Unitek, Vol. 16, No. 1, Pp. 1–6, 2023, Doi: 10.52072/Unitek.V16i1.476.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal PRINTER: Jurnal Pengembangan Rekayasa Informatika dan Komputer

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


