Enkapsulasi Kurkumin dalam Matriks Beads Kitosan-Karaginan yang Tertaut-Silang dengan Glutaraldehida menggunakan Asam Laurat sebagai Pengemulsi

Authors

  • Zhilal Shadiq Politeknik Negeri Cilacap
  • Muhamad Sofi Ardani Politeknik Negeri Cilacap
  • Nur Indah Wardani Politeknik Negeri Cilacap
  • Annisa Yuliana Angeline Politeknik Negeri Cilacap
  • Sari Sekar Ningrum Politeknik Negeri Cilacap

DOI:

https://doi.org/10.29408/sinteza.v5i2.30137

Keywords:

Bead Matrix, Bioavailability, Chitosan, Curcumin, Encapsulation

Abstract

Curcumin (diferuloylmethane), the primary bioactive compound in turmeric (Curcuma longa), is a natural polyphenol with proven pharmacological properties. Its safety and biodegradability, along with multifunctional health benefits, have been well-documented. However, curcumin exhibits poor water solubility. Consequently, curcumin shows low systemic bioavailability and rapid urinary excretion. A carrier matrix is essential to improve bioavailability and prolong systemic retention of curcumin, and one of carrier matrix that can be utilized is a bead matrix. In this study, bead matrices were prepared by combining a chitosan solution with lauric acid and carrageenan solutions and then dropping the mixture into a sodium hydroxide solution, which acts as an ionic neutralizing agent during bead formation. The encapsulation process was conducted by immersing the formed bead matrices in curcumin and glutaraldehyde solutions to facilitate crosslinking reactions with chitosan. The resulting bead matrices were analyzed using FT-IR spectroscopy to determine the interactions and bonds formed between the materials used. The results indicated that the encapsulation efficiency of curcumin was influenced by the concentrations of chitosan and lauric acid, with higher concentrations of both components leading to increased encapsulation efficiency.

References

Abidin, I. Z., Murphy, E. J., Fehrenbach, G. W., Gately, N., & Major, I. (2024). Chitosan-(poly)acrylic acid polyelectrolyte complexes: Enhanced mucoadhesion and sustained drug release in vaginal tablets. Carbohydrate Polymer Technologies and Applications, 7. https://doi.org/10.1016/j.carpta.2024.100480

Alemu, D., Getachew, E., & Mondal, A. K. (2023). Study on the Physicochemical Properties of Chitosan and their Applications in the Biomedical Sector. In International Journal of Polymer Science (Vol. 2023). Hindawi Limited. https://doi.org/10.1155/2023/5025341

Ameena M, Meignana Arumugham I, Karthikeyan Ramalingam, & Karthikeyan Ramalingam. (2024). Biomedical Applications of Lauric Acid: A Narrative Review. Cureus. https://doi.org/10.7759/cureus.62770

Barreiro-Iglesias, R., Coronilla, R., Concheiro, A., & Alvarez-Lorenzo, C. (2005). Preparation of chitosan beads by simultaneous cross-linking/ insolubilisation in basic pH: Rheological optimisation and drug loading/release behaviour. European Journal of Pharmaceutical Sciences, 24(1), 77–84. https://doi.org/10.1016/j.ejps.2004.09.013

Chachanidze, R., Xie, K., Massaad, H., Roux, D., Leonetti, M., & De Loubens, C. (2022). Structural characterization of the interfacial self-assembly of chitosan with oppositely charged surfactant. Journal of Colloid and Interface Science Volume, 616, 911–920. https://doi.org/https://doi.org/10.1016/j.jcis.2022.01.143

Chen, H. W., Chen, S. Der, Wu, H. T., Cheng, C. H., Chiou, C. S., & Chen, W. T. (2024). Improvement in Curcumin’s Stability and Release by Formulation in Flexible Nano-Liposomes. Nanomaterials, 14(22). https://doi.org/10.3390/nano14221836

Desai, N., Rana, D., Salave, S., Gupta, R., Patel, P., Karunakaran, B., Sharma, A., Giri, J., Benival, D., & Kommineni, N. (2023). Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications. In Pharmaceutics (Vol. 15, Issue 4). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/pharmaceutics15041313

Dingalwar, A. A., Pethe, A. M., & Telrandhe, U. B. (2024). Polyelectrolyte Complex-based Multiparticulate Drug Delivery System: A Special Emphasis on Chitosan and Alginate. In Asian Journal of Pharmaceutics (Vol. 18, Issue 2).

Fitri, T., Utami, Y., Nurrahman, A., & Nurhidayatun, F. (2024). Sains Indonesiana: Jurnal Ilmiah Nusantara AKTIVITAS ANTIOKSIDAN Virgin Coconut Oil (VCO) ASAL CILACAP DENGAN METODE ABTS (2,2-Azinobis(3-ethylbenzothiazoline)-6-sulfonic acid).

Fuloria, S., Mehta, J., Chandel, A., Sekar, M., Rani, N. N. I. M., Begum, M. Y., Subramaniyan, V., Chidambaram, K., Thangavelu, L., Nordin, R., Wu, Y. S., Sathasivam, K. V., Lum, P. T., Meenakshi, D. U., Kumarasamy, V., Azad, A. K., & Fuloria, N. K. (2022). A Comprehensive Review on the Therapeutic Potential of Curcuma longa Linn. in Relation to its Major Active Constituent Curcumin. In Frontiers in Pharmacology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fphar.2022.820806

Galan, J., Trilleras, J., Zapata, P. A., Arana, V. A., & Grande-Tovar, C. D. (2021). Optimization of chitosan glutaraldehyde-crosslinked beads for reactive blue 4 anionic dye removal using a surface response methodology. Life, 11(2), 1–20. https://doi.org/10.3390/life11020085

Goswami, S., Saxena, S., Yadav, S., Goswami, D., Brahmachari, K., Karmakar, S., Pramanik, B., & Brahmachari, S. (2022). Review of Curcumin and Its Different Formulations: Pharmacokinetics, Pharmacodynamics and Pharmacokinetic-Pharmacodynamic Interactions. OBM Integrative and Complementary Medicine, 07(04), 1–35. https://doi.org/10.21926/obm.icm.2204057

Hung, H. M., Manh, V. Q., Thao, V. T. T., Thuy, D. T. P., Dung, P. T., Viet, N. T. B., Linh, D. K., Linh, N. N., Oanh, D. T. Y., Chinh, N. T., Hoang, T., & Trung, V. Q. (2022). Evaluation of the effect of the chitosan/carrageenan ratio on lovastatin release from chitosan/carrageenan based biomaterials. Vietnam Journal of Chemistry, 60(S1), 72–78. https://doi.org/10.1002/vjch.202200078

Ismillayli, N., Hadi, S., Andayani, I. G. A. S., Honiar, R., Mariana, B., Sanjaya, R. K., & Hermanto, D. (2021). Synthesize of self-electrostatic interaction chitosan-carrageenan membrane and its properties. Journal of Physics: Conference Series, 1943(1). https://doi.org/10.1088/1742-6596/1943/1/012177

Jafernik, K., Ładniak, A., Blicharska, E., Czarnek, K., Ekiert, H., Wiącek, A. E., & Szopa, A. (2023). Chitosan-Based Nanoparticles as Effective Drug Delivery Systems—A review. In Molecules (Vol. 28, Issue 4). MDPI. https://doi.org/10.3390/molecules28041963

Komersová, A., Svoboda, R., Skalická, B., Bartoš, M., Šnejdrová, E., Mužíková, J., & Matzick, K. (2022). Matrix Tablets Based on Chitosan–Carrageenan Polyelectrolyte Complex: Unique Matrices for Drug Targeting in the Intestine. Pharmaceuticals, 15(8). https://doi.org/10.3390/ph15080980

Mckimmie, R. L., Easter, L., Weinberg, R. B., & Weinberg, R. B. (2013). Acyl chain length, saturation, and hydrophobicity modulate the efficiency of dietary fatty acid absorption in adult humans. Am J Physiol Gastrointest Liver Physiol, 305, 620–627. https://doi.org/10.1152/ajpgi.00258.2013.-Intestina l

Mohammad Mohajeri, Reza Momenai, Somayyeh Karami-Mohajeri, Mandana Ohadi, & Mohammad Amin Raeisi Estabragh. (2025). Curcumin as a Natural Therapeutic Agent: A Rapid Review of Potential Clinical Uses and Mechanisms of Action. Iran J Pharm Res., 24 (2025), 1–13. https://doi.org/https://doi.org/10.5812/ijpr-156983

Pratiwi, P. D., Citrariana, S., & Gemantari, B. M. (2023). Bahan Tambahan dalam Sediaan Tablet: Review. Sinteza, 3(2), 41–48. https://doi.org/10.29408/sinteza.v3i2.17472

Rabia Sohail, & Shah Rukh Abbas. (2020). Evaluation of Amygdalin-Loaded Alginate-Chitosan Nanoparticles as Biocompatible Drug Delivery Carriers for Anticancerous Efficacy. International Journal of Biological Macromolecules, 153(June 2020), 36–45. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.02.191

Silant’ev, V. E., Belousov, A. S., Trukhin, F. O., Struppul, N. E., Shmelev, M. E., Patlay, A. A., Shatilov, R. A., & Kumeiko, V. V. (2024). Rational Design of Pectin–Chitosan Polyelectrolyte Nanoparticles for Enhanced Temozolomide Delivery in Brain Tumor Therapy. Biomedicines, 12(7). https://doi.org/10.3390/biomedicines12071393

Tabanelli, R., Brogi, S., & Calderone, V. (2021). Improving curcumin bioavailability: Current strategies and future perspectives. In Pharmaceutics (Vol. 13, Issue 10). MDPI. https://doi.org/10.3390/pharmaceutics13101715

William C. Griffin. (1949). Classification of Surface Active Agents by HLB. Journal of Cosmetic Science, 1, 311–326. http://journal.scconline.org/contents/cc1949/cc001n05.html

Yeo, S., Kim, M. J., Shim, Y. K., Yoon, I., & Lee, W. K. (2022). Solid Lipid Nanoparticles of Curcumin Designed for Enhanced Bioavailability and Anticancer Efficiency. ACS Omega, 7(40), 35875–35884. https://doi.org/10.1021/acsomega.2c04407

Downloads

Published

2025-08-09

How to Cite

Shadiq, Z., Ardani, M. S., Wardani, N. I., Angeline, A. Y., & Ningrum, S. S. (2025). Enkapsulasi Kurkumin dalam Matriks Beads Kitosan-Karaginan yang Tertaut-Silang dengan Glutaraldehida menggunakan Asam Laurat sebagai Pengemulsi. Sinteza, 5(2), 82–91. https://doi.org/10.29408/sinteza.v5i2.30137

Issue

Section

Articles