Bioactive Compound Profiling of Ethyl Acetate Fraction from Oil Palm (Elaeis guineensis Jacq.) Leaves using Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS)

Authors

  • Deni Setiawan Universitas Lambung Mangkurat
  • Samsul Hadi Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University Banjarbaru, South Kalimantan, Indonesia
  • Nur Mahdi Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University Banjarbaru, South Kalimantan, Indonesia
  • Nurul Mardiati Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University Banjarbaru, South Kalimantan, Indonesia
  • Normaidah Pharmacist Professional Study, Faculty of Mathematics and Science, Lambung Mangkurat University. Banjarbaru, Indonesia.
  • Nabila Hadiah Akbar Pharmacist Professional Study, Faculty of Mathematics and Science, Lambung Mangkurat University. Banjarbaru, Indonesia.
  • Muhammad Rasyid Ridha Research Organization for Health, National Research and Innovation Agency, Republic of Indonesia. Bogor, Indonesia
  • Fitri Apriliany Department of Pharmacy, Faculty of Health, Bumigora University Mataram, Indonesia

DOI:

https://doi.org/10.29408/sinteza.v5i2.30147

Keywords:

Oil palm leave, Elaeis guineensis Jacq, LC-HRMS, Zingerol

Abstract

Oil palm leaves could yield various health benefits, potentially leading to innovative applications in natural remedies, supplements, and dietary products. Targeted extraction and sophisticated analytical methods have become necessary for investigating bioactive compounds in plant materials. The combination of liquid chromatography and high-resolution mass spectrometry (LC–HRMS) makes for a potent technique for analyzing a wide range of metabolites, allowing for the precise and sensitive identification of various plant compounds. This investigation aimed to examine the active compounds in the ethyl acetate fraction of Elaeis guineensis leaves using LC–HRMS to identify potential new avenues for drug research. The simplicia was extracted by completely immersing 500 g of granules in acetone for three days. The crude extract was fractionated with n-hexane, ethyl acetate, and n-butanol solvents to separate components according to their polarity. The ethyl acetate part was analyzed using LC–HRMS with specific settings, including a temperature of 30°C and a gas flow rate of 11.01 L/min. The extract yield from dense oil palm leaves was 32.5 g, equivalent to 6.5%. Subsequently, the components were separated by fractionating the complete yield. The n-hexane fraction yield was 7.085 g or 21.83%, the ethyl acetate fraction yield was 3.38 g or 10.4%, the n-butanol fraction yield was 8.84 g or 27.2%, and the remaining fraction yield was 3.93 g or 12.1%. In conclusion, oil palm leaves are a prospective source of zingerol compounds, suggesting potential to be used as an alternative to rhizomes.

References

Abogunrin-Olafisoye, O. B., Adeyi, O., Adeyi, A. J., & Oke, E. O. (2024). Sustainable utilization of oil palm residues and waste in nigeria: practices, prospects, and environmental considerations. Waste Management Bulletin, 2(1), 214–228. https://doi.org/10.1016/j.wmb.2024.01.011

Ahmad, B., Rehman, M. U., Amin, I., Mir, M. ur R., Ahmad, S. B., Farooq, A., Muzamil, S., Hussain, I., Masoodi, M., & Fatima, B. (2018). Zingerone (4-(4-hydroxy-3-methylphenyl) butan-2-one) protects against alloxan-induced diabetes via alleviation of oxidative stress and inflammation: Probable role of NF-kB activation. Saudi Pharmaceutical Journal, 26(8), 1137–1145. https://doi.org/10.1016/j.jsps.2018.07.001

Ait Lahcen, N., Liman, W., Oubahmane, M., Hdoufane, I., Habibi, Y., Alanazi, A. S., Alanazi, M. M., Delaite, C., Maatallah, M., & Cherqaoui, D. (2024). Drug design of new anti-EBOV inhibitors: QSAR, homology modeling, molecular docking and molecular dynamics studies. Arabian Journal of Chemistry, 17(9), 1–13. https://doi.org/10.1016/j.arabjc.2024.105870

Alhaji, A. M., Almeida, E. S., Carneiro, C. R., da Silva, C. A. S., Monteiro, S., & Coimbra, J. S. dos R. (2024). Palm Oil (Elaeis guineensis): A Journey through Sustainability, Processing, and Utilization. Foods, 13(17), 2814. https://doi.org/10.3390/foods13172814

Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4). https://doi.org/10.3390/plants6040042

Anagnostopoulou, K., Alampanos, V., Evgenidou, E., & Lambropoulou, D. A. (2025). Liquid chromatography-high resolution mass spectrometry based analysis of persistent mobile organic compounds in aqueous samples: Method development and optimization. Green Analytical Chemistry, 12, 100214. https://doi.org/10.1016/j.greeac.2025.100214

Aryal, B., Adhikari, B., Aryal, N., Bhattarai, B. R., Khadayat, K., & Parajuli, N. (2021). LC-HRMS Profiling and Antidiabetic, Antioxidant, and Antibacterial Activities of Acacia catechu (L.f.) Willd. BioMed Research International, 2021(11), 1. https://doi.org/10.1155/2021/7588711

Cinosi, E., Martinotti, G., Simonato, P., Singh, D., Demetrovics, Z., Roman-Urrestarazu, A., Bersani, F. S., Vicknasingam, B., Piazzon, G., Li, J. H., Yu, W. J., Kapitány-Fövény, M., Farkas, J., Di Giannantonio, M., & Corazza, O. (2015). Following “the Roots” of Kratom (Mitragyna speciosa): The Evolution of an Enhancer from a Traditional Use to Increase Work and Productivity in Southeast Asia to a Recreational Psychoactive Drug in Western Countries. BioMed Research International, 2015. https://doi.org/10.1155/2015/968786

Cui, D., Zhang, C., Zhang, L., Zheng, J., Wang, J., He, L., Jin, H., Kang, Q., Zhang, Y., Li, N., Sun, Z., Zheng, W., Wei, J., Zhang, S., Feng, Y., Tan, W., & Zhong, Z. (2025). Natural anti-cancer products: insights from herbal medicine. Chinese Medicine (United Kingdom), 20(1), 1–91. https://doi.org/10.1186/s13020-025-01124-y

Dalimunthe, A., Carensia Gunawan, M., Dhiya Utari, Z., Dinata, M. R., Halim, P., Estherina S. Pakpahan, N., Sitohang, A. I., Sukarno, M. A., Yuandani, Harahap, Y., Setyowati, E. P., Park, M. N., Yusoff, S. D., Zainalabidin, S., Prananda, A. T., Mahadi, M. K., Kim, B., Harahap, U., & Syahputra, R. A. (2024). In-depth analysis of lupeol: delving into the diverse pharmacological profile. In Frontiers in Pharmacology (Vol. 15). Frontiers Media SA. https://doi.org/10.3389/fphar.2024.1461478

Duan, X., Subbiah, V., Agar, O. T., Barrow, C. J., Ashokkumar, M., Dunshea, F. R., & Suleria, H. A. R. (2024). Optimizing extraction methods by a comprehensive experimental approach and characterizing polyphenol compositions of Ecklonia radiata. Food Chemistry, 455, 1. https://doi.org/10.1016/j.foodchem.2024.139926

Gil-Martín, E., Forbes-Hernández, T., Romero, A., Cianciosi, D., Giampieri, F., & Battino, M. (2022). Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. In Food Chemistry (Vol. 378). Elsevier Ltd. https://doi.org/10.1016/j.foodchem.2021.131918

Gupta, J., Sharma, B., Sorout, R., Singh, R. G., Ittishree, & Sharma, M. C. (2025). Ginger (Zingiber officinale) in traditional Chinese medicine: A comprehensive review of its anti-inflammatory properties and clinical applications. Pharmacological Research - Modern Chinese Medicine, 14(1), 1–11. https://doi.org/10.1016/j.prmcm.2024.100561

Hulleman, T., Turkina, V., O’Brien, J. W., Chojnacka, A., Thomas, K. V., & Samanipour, S. (2023). Critical Assessment of the Chemical Space Covered by LC-HRMS Non-Targeted Analysis. In Environmental Science and Technology (Vol. 57, Issue 38, pp. 14101–14112). American Chemical Society. https://doi.org/10.1021/acs.est.3c03606

Ikhwan Rizki, M., Khumaira Sari, A., Kartika, D., Khairunnisa, A., Normaidah, dan, & Penelitian, A. (2022). Penetapan Kadar Fenolik Total dan Uji Aktivitas Antioksidan Fraksi dari Ekstrak Etanol Daun Cempedak (Artocarpus integer) dengan Metode DPPH. MPI (Media Pharmaceutica Indonesiana) ¿, 4(2), 168–178.

Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Archives of Toxicology, 97(10), 2499–2574. https://doi.org/10.1007/s00204-023-03562-9

Lau, G. W., King, P. J. H., Chubo, J. K., King, I. C., Ong, K. H., Ismail, Z., Robin, T., & Shamsi, I. H. (2024). The Potential Benefits of Palm Oil Waste-Derived Compost in Embracing the Circular Economy. Agronomy, 14(11). https://doi.org/10.3390/agronomy14112517

Luo, X., Li, J., Cen, Z., Feng, G., Hong, M., Huang, L., & Long, Q. (2025). Exploring the therapeutic potential of lupeol: A review of its mechanisms, clinical applications, and advances in bioavailability enhancement. Food and Chemical Toxicology, 196, 115193. https://doi.org/10.1016/J.FCT.2024.115193

Mohamed, S. (2014). Oil Palm Leaf: A New Functional Food Ingredient for Health and Disease Prevention. Journal of Food Processing & Technology, 05(02), 1–6. https://doi.org/10.4172/2157-7110.1000300

Morlock, G. E. (2021). High-performance thin-layer chromatography combined with effect-directed assays and high-resolution mass spectrometry as an emerging hyphenated technology: A tutorial review. Analytica Chimica Acta, 1180. https://doi.org/10.1016/j.aca.2021.338644

Nabila, R., Hidayat, W., Haryanto, A., Hasanudin, U., Iryani, D. A., Lee, S., Kim, S., Kim, S., Chun, D., Choi, H., Im, H., Lim, J., Kim, K., Jun, D., Moon, J., & Yoo, J. (2023). Oil palm biomass in Indonesia: Thermochemical upgrading and its utilization. Renewable and Sustainable Energy Reviews, 176, 1–23. https://doi.org/10.1016/j.rser.2023.113193

Setiawan, D., Hadi, S., Shindi P, M. R., Mahdi, N., & Rinda, R. P. (2025). EFFECTIVENESS TEST OF OIL PALM LEAF EXTRACT (Elaeis guineensis Jacq.) AS A MOSQUITO BIOLARVACIDE Aedes aegypti. Jurnal Farmasi Sains Dan Praktis (JFSP), 11(1), 11–17. https://doi.org/10.31603/pharmacy.v%vi%i.10275

Setiawansyah, A., Susanti, G., Hidayati, N., Gemantari, B. M., Alrayan, R., Hadi, I., Luthfiana, D., & Hasanah, N. (2024). Telaah Potensi Antivirus Mitraginin terhadap Protease 3CLpro SARS-CoV-2 dengan Pendekatan Molecular Docking. Sinteza, 4(2), 65–73. https://doi.org/10.29408/sinteza.v4i2.25634

Sharma, S., Shukla, M. K., Sharma, K. C., Tirath, Kumar, L., Anal, J. M. H., Upadhyay, S. K., Bhattacharyya, S., & Kumar, D. (2023). Revisiting the therapeutic potential of gingerols against different pharmacological activities. Naunyn-Schmiedeberg’s Archives of Pharmacology, 396(4), 633–647. https://doi.org/10.1007/s00210-022-02372-7

Susanti, I., Pratiwi, R., Rosandi, Y., & Hasanah, A. N. (2024). Separation Methods of Phenolic Compounds from Plant Extract as Antioxidant Agents Candidate. Plants, 13(7), 1. https://doi.org/10.3390/plants13070965

Tsai, F. S., Lin, L. W., & Wu, C. R. (2016). Lupeol and its role in chronic diseases. In Advances in Experimental Medicine and Biology (Vol. 929, pp. 145–175). Springer New York LLC. https://doi.org/10.1007/978-3-319-41342-6_7

Wang, H., Chen, Y., Wang, L., Liu, Q., Yang, S., & Wang, C. (2023). Advancing herbal medicine: enhancing product quality and safety through robust quality control practices. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.1265178

Zhu, W., Huang, L., Cheng, H., Li, N., Zhang, B., Dai, W., Wu, X., Zhang, D., Feng, W., Li, S., & Xu, H. (2024). GABA and its receptors’ mechanisms in the treatment of insomnia. In Heliyon (Vol. 10, Issue 23). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2024.e40665

Zulfansyah, R., Mahdi, N., & Hamiddani S., R. (2023). Uji Efek Analgetik Ekstrak Etanol 96% Daun Kelapa Sawit (Elaeis Guineensis Jacq) Terhadap Mencit (Mus Musculus) Yang Di Induksi Asam Asetat. Jurnal Ilmiah Ibnu Sina (JIIS): Ilmu Farmasi Dan Kesehatan, 8(2), 297–306. https://doi.org/10.36387/jiis.v8i2.1485

Downloads

Published

2025-08-09

How to Cite

Setiawan, D., Hadi, S., Mahdi, N., Mardiati, N., Normaidah, Hadiah Akbar, N., … Apriliany, F. (2025). Bioactive Compound Profiling of Ethyl Acetate Fraction from Oil Palm (Elaeis guineensis Jacq.) Leaves using Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS). Sinteza, 5(2), 92–101. https://doi.org/10.29408/sinteza.v5i2.30147

Issue

Section

Articles