What Solvent is Actually the Best for Extracting Andrographolide? – Computational Evaluation of the Atomic Behavior in Different Solvent Models
DOI:
https://doi.org/10.29408/sinteza.v6i1.33127Keywords:
Andrographolide, Density functional theory, Solvation free energy, CPCM, Solvent selectionAbstract
Andrographolide, a bioactive diterpenoid lactone from Andrographis paniculata, exhibits significant anti-inflammatory, antimicrobial, and anticancer properties, making solvent selection critical for optimizing extraction efficiency while preserving bioactivity. This study aimed to identify the optimal solvent for andrographolide extraction through computational evaluation of solvation thermodynamics and electronic properties using density functional theory. Geometry optimization and solvation calculations were performed at the B3LYP/def2-SVP level using the Conductor-like Polarizable Continuum Model (CPCM) in ORCA version 6.0.1 across twelve solvent systems including water, alcohols, aprotic solvents, and non-polar media. Molecular properties including solvation free energy, frontier molecular orbitals, global chemical reactivity descriptors, dipole moment, atomic charge distribution, molecular electrostatic potential, and infrared spectra were systematically analyzed. Results demonstrated that water exhibited the most favorable solvation free energy at -76.64 kJ/mol, superior to all other examined solvents including acetonitrile (-75.30 kJ/mol), methanol (-75.05 kJ/mol), and significantly better than hexane (-33.52 kJ/mol). Water induces optimal dipole moment enhancement to 1.253 Debye while maintaining stable HOMO-LUMO energy gap of 5.009 eV and consistent global reactivity descriptors, confirming preservation of intrinsic chemical properties and bioactivity. Infrared spectroscopic analysis revealed complete structural integrity in aqueous environment. This computational study establishes water as the superior extraction medium for andrographolide based on exceptional thermodynamic favorability, optimal electronic stabilization, maintained molecular stability, and practical advantages including non-toxicity and environmental sustainability.
References
Adiguna, S. P., Panggabean, J. A., Atikana, A., Untari, F., Izzati, F., Bayu, A., Rosyidah, A., Rahmawati, S. I., & Putra, M. Y. (2021). Antiviral Activities of Andrographolide and Its Derivatives: Mechanism of Action and Delivery System. Pharmaceuticals, 14(11), 1102. https://doi.org/10.3390/ph14111102
Banerjee, P., & Chakraborty, T. (2018). Weak hydrogen bonds: insights from vibrational spectroscopic studies. International Reviews in Physical Chemistry, 37(1), 83–123. https://doi.org/10.1080/0144235X.2018.1419731
Cahyo Kumoro, A., Hasan, M., & Singh, H. (2009). Effects of Solvent Properties on the Soxhlet Extraction of Diterpenoid Lactones from Andrographis Paniculata Leaves. ScienceAsia, 35(3), 306. https://doi.org/10.2306/scienceasia1513-1874.2009.35.306
Da Silva, H. C., Hernandes, I. S., & De Almeida, W. B. (2025). Modeling Solvent Effects in Quantum Chemical Calculation of Relative Energies and NMR Chemical Shifts for Azithromycin. The Journal of Physical Chemistry A, 129(9), 2200–2216. https://doi.org/10.1021/acs.jpca.4c08015
Domingo, L. R., Pérez, P., Ríos-Gutiérrez, M., & Aurell, M. J. (2024). A molecular electron density theory study of hydrogen bond catalysed polar Diels–Alder reactions of α,β-unsaturated carbonyl compounds. Tetrahedron Chem, 10, 100064. https://doi.org/10.1016/j.tchem.2024.100064
Gil, G., Pipolo, S., Delgado, A., Rozzi, C. A., & Corni, S. (2019). Nonequilibrium Solvent Polarization Effects in Real-Time Electronic Dynamics of Solute Molecules Subject to Time-Dependent Electric Fields: A New Feature of the Polarizable Continuum Model. Journal of Chemical Theory and Computation, 15(4), 2306–2319. https://doi.org/10.1021/acs.jctc.9b00010
Giordano, M., Alfano, F. O., Di Maio, F. P., & Di Renzo, A. (2025). Effective dipole model for electrostatic interactions between polarizable spherical particles in particle scale simulations. Scientific Reports, 15(1), 3121. https://doi.org/10.1038/s41598-025-86181-x
He, Q., & Zhao, H. (2025). Pentoxifylline in sixteen pure solvents: Solubility, DFT calculation, and molecular dynamic simulation. Journal of Molecular Liquids, 429, 127610. https://doi.org/10.1016/j.molliq.2025.127610
Iruretagoyena, M. I., Tobar, J. A., González, P. A., Sepúlveda, S. E., Figueroa, C. A., Burgos, R. A., Hancke, J. L., & Kalergis, A. M. (2005). Andrographolide Interferes with T Cell Activation and Reduces Experimental Autoimmune Encephalomyelitis in the Mouse. The Journal of Pharmacology and Experimental Therapeutics, 312(1), 366–372. https://doi.org/10.1124/jpet.104.072512
Isshiki, Y., Montes, E., Nishino, T., Vázquez, H., & Fujii, S. (2024). Resolving molecular frontier orbitals in molecular junctions with kHz resolution. Chemical Science, 15(42), 17328–17336. https://doi.org/10.1039/D4SC05285D
Khosravanipour Mostafazadeh, A., Karimiestahbanati, M., Diop, A., Adjallé, K., Drogui, P., & Tyagi, R. D. (2021). Green Chemistry for Green Solvent Production and Sustainability Toward Green Economy. In Biomass, Biofuels, Biochemicals (pp. 583–636). Elsevier. https://doi.org/10.1016/B978-0-12-821878-5.00017-9
Low, M., Suresh, H., Zhou, X., Bhuyan, D. J., Alsherbiny, M. A., Khoo, C., Münch, G., & Li, C. G. (2024). The wide spectrum anti-inflammatory activity of andrographolide in comparison to NSAIDs: A promising therapeutic compound against the cytokine storm. PLOS ONE, 19(7), e0299965. https://doi.org/10.1371/journal.pone.0299965
Luksta, I., & Spalvins, K. (2023). Methods for Extraction of Bioactive Compounds from Products: A Review. Environmental and Climate Technologies, 27(1), 422–437. https://doi.org/10.2478/rtuect-2023-0031
Mabesoone, M. F. J., Palmans, A. R. A., & Meijer, E. W. (2020). Solute–Solvent Interactions in Modern Physical Organic Chemistry: Supramolecular Polymers as a Muse. Journal of the American Chemical Society, 142(47), 19781–19798. https://doi.org/10.1021/jacs.0c09293
Mahmood, E. A., Poor Heravi, M. R., Khanmohammadi, A., Mohammadi-Aghdam, S., Ebadi, A. G., & Habibzadeh, S. (2022). DFT calculations, structural analysis, solvent effects, and non-covalent interaction study on the para-aminosalicylic acid complex as a tuberculosis drug: AIM, NBO, and NMR analyses. Journal of Molecular Modeling, 28(10), 297. https://doi.org/10.1007/s00894-022-05279-5
Maqbool, M., & Ayub, K. (2024). Controlled tuning of HOMO and LUMO levels in supramolecular nano-Saturn complexes. RSC Advances, 14(53), 39395–39407. https://doi.org/10.1039/D4RA07068B
Mata, I., Alkorta, I., Molins, E., & Espinosa, E. (2010). Universal Features of the Electron Density Distribution in Hydrogen‐Bonding Regions: A Comprehensive Study Involving H⋅⋅⋅X (X=H, C, N, O, F, S, Cl, π) Interactions. Chemistry – A European Journal, 16(8), 2442–2452. https://doi.org/10.1002/chem.200901628
Mélin, T., Diesinger, H., Deresmes, D., & Stiévenard, D. (2004). Probing Nanoscale Dipole-Dipole Interactions by Electric Force Microscopy. Physical Review Letters, 92(16), 166101. https://doi.org/10.1103/PhysRevLett.92.166101
Mohamed, A., Visco, D. P. Jr., Breimaier, K., & Bastidas, D. M. (2025). Effect of Molecular Structure on the B3LYP-Computed HOMO–LUMO Gap: A Structure −Property Relationship Using Atomic Signatures. ACS Omega, 10(3), 2799–2808. https://doi.org/10.1021/acsomega.4c08626
Mondal, M., Sarkar, C., Saha, S., Hossain, M. N., Norouzi, R., Mubarak, M. S., Siyadatpanah, A., Wilairatana, P., Hossain, R., Islam, M. T., & Coutinho, H. D. M. (2022). Hepatoprotective activity of andrographolide possibly through antioxidative defense mechanism in Sprague-Dawley rats. Toxicology Reports, 9, 1013–1022. https://doi.org/10.1016/j.toxrep.2022.04.007
Neese, F. (2025). Software Update: The ORCA Program System—Version 6.0. In Wiley Interdisciplinary Reviews: Computational Molecular Science (Vol. 15, Issue 2). John Wiley and Sons Inc. https://doi.org/10.1002/wcms.70019
Polonius, S., Zhuravel, O., Bachmair, B., & Mai, S. (2023). LVC/MM: A Hybrid Linear Vibronic Coupling/Molecular Mechanics Model with Distributed Multipole-Based Electrostatic Embedding for Highly Efficient Surface Hopping Dynamics in Solution. Journal of Chemical Theory and Computation, 19(20), 7171–7186. https://doi.org/10.1021/acs.jctc.3c00805
R., A., Hu, J., & Momeen, M. U. (2023). Role of the solvent polarity on the optical and electronic characteristics of 1-iodoadamantane. RSC Advances, 13(42), 29489–29495. https://doi.org/10.1039/D3RA05297D
Rakipov, I. T., Petrov, A. A., Akhmadiyarov, A. A., Khachatrian, A. A., & Varfolomeev, M. A. (2022). FTIR spectral study of intermolecular interactions of C=O groups of amides in solution. Journal of Molecular Liquids, 354, 118838. https://doi.org/10.1016/j.molliq.2022.118838
Rubi, R. V. C., Quitain, A. T., Agutaya, J. K. C. N., Doma, B. T., Soriano, A. N., Auresenia, J., & Kida, T. (2019). Synergy of in-situ formation of carbonic acid and supercritical CO2-expanded liquids: Application to extraction of andrographolide from Andrographis paniculata. The Journal of Supercritical Fluids, 152, 104546. https://doi.org/10.1016/j.supflu.2019.104546
Setiawansyah, A., Fiolita, B., Agatha, S., Sitindaon, R. S. E., Reynaldi, M. A., Hidayat, L. H., Hadi, I., Permatasari, L., Hidayati, N., Arsul, M. I., & Dirgantara, S. (2025). Impact of post-harvest process and methanol polarity on the content of niazirin, flavonoids, phenols, and antioxidant activity index of Moringa oleifera Lam leaves. Food and Humanity, 5, 100767. https://doi.org/https://doi.org/10.1016/j.foohum.2025.100767
Shashikala, H. B. M., Chakravorty, A., & Alexov, E. (2019). Modeling Electrostatic Force in Protein-Protein Recognition. Frontiers in Molecular Biosciences, 6. https://doi.org/10.3389/fmolb.2019.00094
Siregar, M. H., Nurdiana, N., Bal’afif, F., Djajalaksana, S., & Setiawansyah, A. (2026). Comprehensive Bioinformatics, Molecular Docking, and In Vivo Investigation of a Novel Mechanistic Pathway in Pentylenetetrazole-Induced Seizures. Advanced Journal of Chemistry, Section A, 9(5), 919–939. https://doi.org/10.48309/ajca.2026.561381.1974
Sosnowska, A., Chojnacki, J., Samaszko-Fiertek, J., Madaj, J., & Dmochowska, B. (2025). Crystal Structures of d-Lyxono-1,4-lactone and Its O-Tosyl Derivative. Molecules, 30(2), 287. https://doi.org/10.3390/molecules30020287
Souza Junior, M. V., Oliveira Neto, J. G., Pereira, W. O., Rodrigues, J. A. O., Viana, J. R., Reis, A. S., Lage, M. R., Carvalho, G. G. C., Pessoa, C. O., Santos, A. O. dos, & Sousa, F. F. de. (2024). Comprehensive analysis of the electronic, thermodynamic, and spectroscopic properties of a Cu(II)-based complex with 1,10-phenanthroline and L-glutamine. Heliyon, 10(20), e37505. https://doi.org/10.1016/j.heliyon.2024.e37505
Stahn, M., Ehlert, S., & Grimme, S. (2023). Extended Conductor-like Polarizable Continuum Solvation Model (CPCM-X) for Semiempirical Methods. The Journal of Physical Chemistry A, 127(33), 7036–7043. https://doi.org/10.1021/acs.jpca.3c04382
Sumer, Z., & Van Lehn, R. C. (2023). Heuristic Computational Model for Predicting Lignin Solubility in Tailored Organic Solvents. ACS Sustainable Chemistry & Engineering, 11(1), 187–198. https://doi.org/10.1021/acssuschemeng.2c05199
Unke, O. T., & Meuwly, M. (2019). PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges. Journal of Chemical Theory and Computation, 15(6), 3678–3693. https://doi.org/10.1021/acs.jctc.9b00181
Wang, L.-P., & Song, C. (2016). Geometry optimization made simple with translation and rotation coordinates. The Journal of Chemical Physics, 144(21). https://doi.org/10.1063/1.4952956
Wang, W., Wang, J., Dong, S., Liu, C., Italiani, P., Sun, S., Xu, J., Boraschi, D., Ma, S., & Qu, D. (2010). Immunomodulatory activity of andrographolide on macrophage activation and specific antibody response. Acta Pharmacologica Sinica, 31(2), 191–201. https://doi.org/10.1038/aps.2009.205
Zarić, M. M., Radović, I. R., & Kijevčanin, M. L. (2020). Intermolecular interactions of cis-3-hexen-1-ol or 1-hexanol with n-hexane: Thermodynamic study, FT-IR analysis and quantum chemical calculations. Journal of Molecular Liquids, 303, 112486. https://doi.org/10.1016/j.molliq.2020.112486
Zhang, J., Lu, H., Ruan, Y., Huang, S., Deng, S., Wang, Y., Li, Q., Zhao, Z., Feng, L., & Guo, W. (2024). Effects and Mechanisms of Andrographolide for COVID-19: A Network Pharmacology-Based and Experimentally Validated Study. Natural Product Communications, 19(10). https://doi.org/10.1177/1934578X241288428
Zuhriyah, N., Fatkhurrohman, F., Aida, M., Apriliani, S., & Setiyono, E. (2025). In silico study of andrographolide bioactive compound from Andrographis paniculata as a potential anti-photoaging agent. Biogenesis: Jurnal Ilmiah Biologi, 12(2), 16–27. https://doi.org/10.24252/bio.v12i2.57447
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Sinteza

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in Sinteza, agree to retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.

2.png)
