KOMPARASI ALGORITMA C4.5 DAN C4.5 BERBASIS PSO UNTUK PREDIKSI JUMLAH PENGGUNAAN BBM PERBULAN PADA KANTOR DINAS LINGKUNGAN HIDUP DAN KEBERSIHAN KABUPATEN LOMBOK TIMUR
DOI:
https://doi.org/10.29408/jit.v2i1.1173Keywords:
Prediction, BBM, Decition Tree (C4.5), Particle Swarm OptimizationAbstract
East Lombok Regency is one of the second level regions in West Nusa Tenggara Province which is located on the east side of Lombok Island. The capital city of East Lombok Regency is the city of Selong, where all government agencies are based in this city. One of them is the Department of Environment and Hygiene of East Lombok Regency. In carrying out operational duties at the Office of Environment and Hygiene the operational vehicle requires that the fuel oil is a subsidy from the government. Therefore, the use of BBM every day must be recorded properly so that it can be predicted the amount of fuel usage every month. However, the Office of the Environment and Hygiene Office has difficulty in processing such data in large quantities. Predicted information on fuel use is needed by the head of the agency to assist in making decisions or policies. Of these problems the right data mining technique to use is classification. One method of classification of data mining is the decition tree algorithm (C4.5) or called the decision tree. The decition tree (C4.5) algorithm has weaknesses in reading large amounts of data, so researchers use weighting by applying Particle Swarm Optimization (PSO) for attribute selection to increase the accuracy of C4.5.
Thus the researcher will utilize data mining software in applying a comparison of the decition tree (C4.5) and C4.5 algorithms based on Particle Swarm Optimization (PSO) to get the best accuracy value in predicting the amount of monthly use of fuel oil at the Service Office Environment and Cleanliness of East Lombok Regency.
DOI : 10.29408/jit.v2i1.1173
References
C. Kothari, Research methodology: methods and techniques. 2004, p. 418.
Larose, Daniel T, 2005, Discovering Knowledge in Data: An Introduction to Data Mining, John Willey & Sons. Inc
Gray, D. E. (2004). Doing Research in the Real World. New Delhi: SAGE.
J. Han and M. Kamber, “Data Mining: Concepts and Techniques,†Ann. Phys. (N. Y)., vol. 54, p. 770, 2006.
Abraham, A., Grosan, C., & Ramos, V. (2006). Swarm Intelligence in Data Mining. New York: Springer., p. 2006, 2006.
Han, J., & Kamber, M. (2007). Data Mining Concepts and Technique. Morgan Kaufmann publisher.
Berndtssom, M., Hansson, J., Olsson, B., & Lundell, B. (2008). A Guide for Students in Computer Science and Information Systems. London: Springer., p. 2008, 2008
Dawson, C. W. (2009). Project in Computing and Information System A Student's Guide. England: Addison-Wesley
Wu, X., & Kumar, V. (2009). The Top Ten Algorithms in Data Mining. Taylor & Francis Group, LLC.
Vercellis, C. (2009). Business Intelligence : Data Mining and Optimization for Decision Making. John Wiley & Sons, Ltd
Shukla, A., Tiwari, R., & Kala, R. (2010). Real Life Application of Soft Computing. CRC Press.., p. 2010, 2010.
Sunjana. (2010). Klasifikasi Data Nasabah Sebuah Asuransi Menggunakan Algoritma C4.5. Seminar Nasional Aplikasi Teknologi Informasi 2010, D-31.
Zurada, (2010) Could Decision Trees Improve the Classification Accuracy and Interpretability of Loan Granting Decisions
Siti Maspirah, (2011). Algoritma Klasifikasi C4.5 berbasis Particle Swarm Optimization untuk Evaluasi Penentuan kelayakan Prmberian Kredit Koperasi Syariah.
Witten, H. I., Frank, E., & Hall, M. A. (2011). Data Mining Pratical Mechine Learning Tools And Technique. Burlington: Elsevier Inc.
Gorunescu, F. (2011). Data Mining Concept Model Technique. India: springer.
Susanto Hariyanto, (2012). Segmentasi dan Klasifikasi Perilaku Pembayaran Pelanggan Pada Perusahaan Penyedia Layanan Multimedia Dengan Algoritma K-Means dan C4.5.
Evicienna, (2012). Penerapan Algoritma C4.5 berbasis Particle Swarm Optimization untuk Prediksi Hasil Pemilihan Legislatif DPRD DKI Jakarta.
Edy, (2012). Penerapan Algoritma C4.5 dengan Seleksi Atribut berbasis Algoritma Genetika dalam Diagnosa Penyakit Jantung..
Desiyana Lasut, (2012). Prediksi Loyalitas Pelanggan pada Perusahaan Penyedia Layanan Multimedia dengan Algoritma C4.5 berbasis Particle Swarm Optimization.
Undang-undang nomor 19 tahun 2012
Peraturan Menteri Energi dan Sumber Daya Mineral nomor 1 tahun 2013 tentang pengendalian penggunaan BBM yang menjelaskan wilayah dan jumlah BBM bersubsidi yang diberikan.
Downloads
Published
How to Cite
Issue
Section
License
Semua tulisan pada jurnal ini menjadi tanggung jawab penuh penulis. Jurnal Infotek memberikan akses terbuka terhadap siapapun agar informasi dan temuan pada artikel tersebut bermanfaat bagi semua orang. Jurnal Infotek ini dapat diakses dan diunduh secara gratis, tanpa dipungut biaya sesuai dengan lisense creative commons yang digunakan.Jurnal Infotek is licensed under a Creative Commons Attribution 4.0 International License.
Statistik Pengunjung