Penerapan Python Dalam Data Mining Untuk Prediksi Kangker Paru

Authors

DOI:

https://doi.org/10.29408/jit.v6i2.17816

Keywords:

machine learning, c4.5, python, lung cancer

Abstract

Lung cancer is one of the groups of cancer that causes the most deaths, including in Indonesia. Many people with lung cancer do not realize that they are infected with lung cancer, which causes delays in treating this disease. For this reason, it is necessary to have a method that has a good level of accuracy in making a prediction so that later with a good level of accuracy it can be a reference for the development of an Artificial Intelligence (AI) in the world of health to detect lung cancer early. The proposed study uses the c4.5 algorithm to predict the likelihood of patients with lung cancer by providing the final result in the form of the prediction accuracy of the proposed algorithm. To carry out data mining implementation using the Python programming language by utilizing the library that has been provided to make it easier to implement machine learning. In this study the use of c4.5 was able to predict with an accuracy rate of 86%. This level of accuracy can be said to be worthy of being used as a reference to be able to predict lung cancer patients based on the symptoms that appear in the patient

References

B. A. C. P, “DOI : 10.29408/jit.v1i1. 892,” Baiq Andriska Candra, vol. 1, no. 1, pp. 32–39, 2018.

J. Joseph and L. W. A. Rotty, “Kanker Paru : Laporan Kasus,” vol. 2, no. 1, pp. 17–25, 2020.

Y. Ernawati, S. Ermayanti, D. Herman, and R. Russilawati, “Faktor Risiko Kanker Paru pada Perempuan yang Dirawat di Bagian Paru RSUP Dr. M. Djamil Padang dan RSUD Solok: Penelitian Case Control,” J. Kesehat. Andalas, vol. 8, no. 2S, p. 1, 2019, doi: 10.25077/jka.v8i2s.951.

C. Algoritma, “Prediksi Kekambuhan Kanker Payudara Dengan,” vol. 15, no. 2, pp. 2017–2018, 2018.

Noviandi, “Implementasi Algoritma Decision Tree C4.5 Untuk Prediksi Penyakit Diabetes,” Inohim, vol. 6, no. 1, pp. 1–5, 2018.

B. A. Candra Permana and I. K. Dewi Patwari, “Komparasi Metode Klasifikasi Data Mining Decision Tree dan Naïve Bayes Untuk Prediksi Penyakit Diabetes,” Infotek J. Inform. dan Teknol., vol. 4, no. 1, pp. 63–69, 2021, doi: 10.29408/jit.v4i1.2994.

D. S. Permana and A. Silvanie, “Prediksi Penyakit Jantung Menggunakan Support Vector Machine Dan Python Pada Basis Data Pasien,” vol. 2, no. 1, pp. 29–34, 2021.

V. No and Y. Yuliani, “Algoritma Random Forest Untuk Prediksi Kelangsungan Hidup Pasien Gagal Jantung Menggunakan Seleksi Fitur Bestfirst,” vol. 5, no. 2, pp. 298–306, 2022.

T. Informatika, S. Dharma, and W. Metro, “Klasifikasi Kanker Paru-Paru Menggunakan Metode Naive,” vol. 6, no. 2, pp. 20–24, 2022.

A. U. Zailani and N. L. Hanun, “Penerapan Algoritma Klasifikasi Random Forest Untuk Penentuan Kelayakan Pemberian Kredit Di Koperasi Mitra Sejahtera,” Infotech J. Technol. Inf., vol. 6, no. 1, pp. 7–14, 2020, doi: 10.37365/jti.v6i1.61.

L. Sari, A. Romadloni, and R. Listyaningrum, “Penerapan Data Mining dalam Analisis Prediksi Kanker Paru Menggunakan Algoritma Random,” vol. 14, no. 01, pp. 155–162, 2023, doi: 10.35970/infotekmesin.v14i1.1751.

M. R. Alfarabi, “Optimalisasi Algoritma C4.5 dalam Menganalisis Indikasi Penyebab Penyakit Feline Immunodeficiency Virus (FIV) pada Kucing,” J. Sistim Inf. dan Teknol., vol. 4, pp. 6–9, 2022, doi: 10.37034/jsisfotek.v4i4.152.

C. Algoritma, “Rancang Bangun Aplikasi Pendeteksi Penyakit Ginjal Kronis dengan Menggunakan,” vol. IX, no. 1, 2017.

M. Kafil, “Penerapan Metode K-Nearest Neighbors,” J. Mhs. Tek. Inform., vol. 3, no. 2, pp. 59–66, 2019.

A. Mujumdar and V. Vaidehi, “Diabetes Prediction using Machine Learning Algorithms,” Procedia Comput. Sci., vol. 165, pp. 292–299, 2019, doi: 10.1016/j.procs.2020.01.047

Downloads

Published

20-07-2023

How to Cite

Permana, B. A. C., & Djamaluddin, M. (2023). Penerapan Python Dalam Data Mining Untuk Prediksi Kangker Paru. Infotek: Jurnal Informatika Dan Teknologi, 6(2), 470–477. https://doi.org/10.29408/jit.v6i2.17816

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.