Penggunaan Algoritma K-Means Untuk Menganalisis Pelanggan Potensial Pada Dealer SPS Motor Honda Lombok Timur Nusa Tenggara Barat

Authors

  • Kurnia bin Yahya Universitas Hamzanwadi
  • Martua Hamonangan Nasution Universitas Hamzanwadi

DOI:

https://doi.org/10.29408/jit.v3i1.1814

Keywords:

Kredit, Koperasi, Support Vector Machine

Abstract

Credit is the main product of savings and loan cooperatives to increase profitability. The greater the credit issued, the greater the benefits obtained by cooperatives. Each cooperative will package credit products in such a way as to attract the attention of every customer. However, cooperatives can find problems in the process of lending, such as the "Daruzzakah Rensing" Cooperative located in "Desa Rensing, Kecamatan Sakra Barat, Lombok Timur-NTB-Indonesia". The main products of the Cooperative "Daruzzakah Rensing" are savings and loans. In distributing credit, the cooperative always decides based on statistical data. This data is sometimes not useful if the supporting methods used to predict and classify the data are not appropriate. Therefore, this research requires a method that can classify and predict problematic and non-problematic customers. To answer this question, using the SVM (Support Vector Machine) algorithm to find out the level of accuracy in analyzing creditworthiness proposed by prospective debtors. The SVM algorithm is used to predict, classify, evaluate, and analyze credit. From the results of data processing carried out using the SVM algorithm (Support Vector Machine), it can be categorized as an excellent method, with an accuracy of 90.42% and AUC at 0.957. Accuracy of 90.42% means the SVM algorithm can provide decisions about feasible or not feasible in granting credit to customers who apply for loans.

DOI : 10.29408/jit.v3i1.1814

 

References

R. Fitriana, D. Sugiarto, J. Saragih, and A. Bagio, “Aplikasi Six Sigma Dan Data Mining Untuk Meningkatkan Kualitas Pada Industri Manufaktur,†pp. 92–98, 2014.

P. P. Koperasi, C. Basic, T. Cbt, X. Kopma, T. Nurseto, and M. Pd, “Sejarah Berdirinya Koperasi,†pp. 1–14, 2008.

Anggraini, Riska Putri, “Peran Kredit Koperasi Serba Usaha (KSU) Nuansa Baru Terhadap Perkembangan Usaha Mikro Di Kecamatan Karanganyar,†2016.

Kusdayanti, Niken, "Pengaruh Citra Koperasi Dan Kualitas Pelayanan Terhadap Kepuasan Anggota Koperasi Pegawai Republik Indonesia Setia Kecamatan Mojotengah Kabupaten Wonosobo," 2016.

M. Perkuliahan, “Data Warehouse dan Data Mining Modul Standar untuk digunakan dalam Perkuliahan di Universitas Mercu Buana.â€

G. P. C. J, “Data Mining Dengan Algoritma Apriori,†pp. 1–5. [7] R. Sistem, “Jurnal resti,†vol. 2, no. 1, pp. 361–366, 2018.

Y. Sudriani, “Data Mining : tren Analisa data Berskala Besar Terkait Penelitian Ekologi,†no. September 2016, 2017.

S. Suryaningsum, M. Si, M. I. Effendi, M. Si, D. Raden, and H. Gusaptono, Revitalisasi koperasi. 2017.

E. H. Harahap, L. Muflikhah, and B. Rahayudi, “Implementasi Algoritma Support Vector Machine ( SVM ) Untuk Penentuan Seleksi Atlet Pencak Silat,†vol. 2, no. 10, pp. 3843–3848, 2018.

A. Perdana and M. T. Furqon, “Penerapan Algoritma Support Vector Machine ( SVM ) Pada Pengklasifikasian Penyakit Kejiwaan Skizofrenia ( Studi Kasus : RSJ . Radjiman Wediodiningrat , Lawang ),†vol. 2, no. 9, pp. 3162–3167, 2018.

S. D. Di and K. Magelang, “1 , 2 , 3 1,†vol. 3, no. 8, pp. 811–820, 2014.

J. Ivander and I. Surjandari, “Kombinasi Algoritma Support Vector Machine ( SVM ) Dan Analisis Multi- Attribute ABC Pada Klasifikasi Inventori Indirect Material Di Perusahaan Otomotif.â€

I. W. S. Wicaksana, “Learn Data Mining With RapidMiner,†2013.

Downloads

Published

31-01-2020

How to Cite

Yahya, K. bin, & Nasution, M. H. (2020). Penggunaan Algoritma K-Means Untuk Menganalisis Pelanggan Potensial Pada Dealer SPS Motor Honda Lombok Timur Nusa Tenggara Barat. Infotek: Jurnal Informatika Dan Teknologi, 3(1), 32–41. https://doi.org/10.29408/jit.v3i1.1814

Similar Articles

<< < 1 2 3 4 5 

You may also start an advanced similarity search for this article.