Penerapan Model Decision Tree Menggunakan Python Untuk Prediksi Faktor Dominan Penyebab Penyakit Stroke

Authors

DOI:

https://doi.org/10.29408/jit.v7i1.23232

Keywords:

Prediksi, Decission Tree, Pyton, Stroke.

Abstract

Stroke is known as a disease caused by rupture of blood vessels in the brain or blockage of blood vessels in the brain. Disruption of the blood supply to the brain can result in damage to brain cells which results in damage to brain function. According to the World Health Organization (WHO) stroke is one of the highest causes of death worldwide, because almost 85% of the causes of death in the world are due to stroke. Current developments in science and technology require research to analyze stroke patient data so that the dominant factors that lead to stroke can be identified. This is an initial step that can be taken to address these problems to reduce the risk of death caused by stroke. In this study, the analysis was carried out by implementing a decision tree algorithm using python because the decision tree has good accuracy 91% in making predictions. With the decision tree formed from this algorithm, it will be easy to see the symptoms, starting from those who are most at risk to those who have the lowest risk of causing stroke

References

V. Azzahra and S. Ronoatmodjo, “Faktor-faktor yang Berhubungan dengan Kejadian Stroke pada Penduduk Usia ≥15 Tahun di Provinsi Daerah Istimewa Yogyakarta (Analisis Data Riskesdas 2018),” J. Epidemiol. Kesehat. Indones., vol. 6, no. 2, 2023, doi: 10.7454/epidkes.v6i2.6508.

K. A. Susanto et al., “Implementasi Bahasa Python Dalam Menganalisis Pengaruh Rokok Terhadap Risiko Pasien Terkena Penyakit Stroke,” vol. 2, no. 2, 2023.

Y. Azhar, A. K. Firdausy, and P. J. Amelia, “Perbandingan Algoritma Klasifikasi Data Mining Untuk Prediksi Penyakit Stroke,” SINTECH (Science Inf. Technol. J., vol. 5, no. 2, pp. 191–197, 2022, doi: 10.31598/sintechjournal.v5i2.1222.

D. E. Cahyani, “Penerapan Machine Learning Untuk Prediksi Penyakit Stroke,” J. Kaji. Mat. dan Apl., vol. 3, no. 1, p. 15, 2022, doi: 10.17977/um055v3i12022p15-22.

B. A. Candra Permana and I. K. Dewi Patwari, “Komparasi Metode Klasifikasi Data Mining Decision Tree dan Naïve Bayes Untuk Prediksi Penyakit Diabetes,” Infotek J. Inform. dan Teknol., vol. 4, no. 1, pp. 63–69, 2021, doi: 10.29408/jit.v4i1.2994.

M. M. Santoni, N. Chamidah, and N. Matondang, “Prediksi Hipertensi menggunakan Decision Tree, Naïve Bayes dan Artificial Neural Network pada software KNIME,” Techno.Com, vol. 19, no. 4, pp. 353–363, 2020, doi: 10.33633/tc.v19i4.3872.

I. Handayani, “Penerapan Algoritma C4.5 Untuk Klasifikasi Penyakit Disk Hernia Dan Spondylolisthesis Dalam Kolumna Vertebralis,” JASIEK (Jurnal Apl. Sains, Informasi, Elektron. dan Komputer), vol. 1, no. 2, pp. 83–88, 2019, doi: 10.26905/jasiek.v1i2.3185.

Medy and Alviva, “Implementasi Algoritma C4.5 Menggunakan Python Untuk Klasifikasi Kepuasan Konsumen,” Progres, pp. 49–55, 2019, [Online]. Available: https://jurnal.stmikprofesional.ac.id/index.php/Progress/article/view/146/22.

I. Verawati and M. Wishnu, “Penerapan Data Mining Untuk Rencana Penambahan Stok Produk Menggunakan Algoritma Apriori Data mining,” J. Nas. Inform. dan Teknol. Jar., vol. 6, no. 1, pp. 128–133, 2021, [Online]. Available: https://doi.org/10.30743/infotekjar.v6i1.3884.

R. M. Bantuan and D. A. N. Tatalaksana, “Pengetahuan tentang stroke, faktor risiko, tanda peringatan, respon mencari bantuan, dan tatalaksana pada pasien stroke iskemik di kota semarang,” vol. 2, no. November, pp. 12–21, 2019.

P. A. W. Suwaryo, W. T. Widodo, and E. Setianingsih, “The Risk Factors That Influence the Incidence of Stroke,” LPPM Sekol. Tinggi Ilmu Kesehat. Kendal, vol. 11, no. 4, pp. 251–260, 2019.

Y. A. Utama and S. S. Nainggolan, “Faktor Resiko yang Mempengaruhi Kejadian Stroke: Sebuah Tinjauan Sistematis,” J. Ilm. Univ. Batanghari Jambi, vol. 22, no. 1, p. 549, 2022, doi: 10.33087/jiubj.v22i1.1950.

Noviandi, “Implementasi Algoritma Decision Tree C4.5 Untuk Prediksi Penyakit Diabetes,” Inohim, vol. 6, no. 1, pp. 1–5, 2018.

B. A. C. Permana, R. Ahmad, H. Bahtiar, A. Sudianto, and I. Gunawan, “Classification of diabetes disease using decision tree algorithm (C4.5),” J. Phys. Conf. Ser., vol. 1869, no. 1, 2021, doi: 10.1088/1742-6596/1869/1/012082.

A. Andriani, “Sistem prediksi penyakit diabetes berbasis decision tree,” J. Bianglala Inform., vol. I, no. 1, pp. 1–10, 2013.

Downloads

Additional Files

Published

20-01-2024

How to Cite

Permana, B. A. C., Sadali, M., & Ahmad, R. (2024). Penerapan Model Decision Tree Menggunakan Python Untuk Prediksi Faktor Dominan Penyebab Penyakit Stroke. Infotek: Jurnal Informatika Dan Teknologi, 7(1), 23–31. https://doi.org/10.29408/jit.v7i1.23232

Most read articles by the same author(s)

<< < 1 2 3 4 

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.