Pengelompokan Keaktifan Anggota Perpustakaan Menggunakan Algoritma K-Means

Authors

  • Hamdun Sulaiman Universitas Bina Sarana Informatika
  • Yuri Yuliani Universitas Bina Sarana Informatika
  • Kukuh Panggalih Universitas Bina Sarana Informatika
  • M. Iqbal Alifudin Universitas Bina Sarana Informatika
  • Kudiantoro Widianto Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.29408/jit.v8i1.27978

Keywords:

K-Means Algorithm, Data Analysis, Library Membership, Rimba Baca Library, Activity Patterns

Abstract

This study aims to analyze membership activity at the Rimba Baca Library in South Jakarta using the K-Means algorithm. The background of this research is the library's need to understand membership patterns and improve services based on visit and book borrowing data. The dataset for this study consists of 81 membership records collected from 2023 to 2024. The methodology involved collecting visit and book borrowing data, then applying the K-Means algorithm to cluster members based on their activity levels. The results of the study indicate the presence of three clusters with different characteristics. Cluster 1 comprises very active members, while Clusters 0 and 2 exhibit lower levels of activity. These findings provide insights for the library to develop more effective service strategies, such as special promotions and programs to increase activity among less active member groups. Additionally, the study shows that membership types allowing for more book borrowings do not necessarily correlate with high activity levels. With this information, the library can enhance member engagement and optimize the use of existing resources, thereby creating a more dynamic and interactive environment for all visitors

References

Al Fahrozi, A., Insani, F., Budianita, E., & Afrianty, I. (2023). Implementasi Algoritma K-Means dalam MenentukanClustering pada Penilaian Kepuasan Pelanggan di BadanPelatihan KesehatanPekanbaru. Indonesian Journal of Innovation Multidisipliner Research, 1(4), 474–492..

Ariska, D., Simanjuntak, M., & Lubis, I. (2023). Clustering Untuk Pemberian. 2(November), 112–130.

Hasim Azari, Dwi Hartanti, & Aprilisa Arum Sari. (2024). Pengelompokan Produksi Padi dan Beras Provinsi Jawa Timur dengan Metode Agglomerative Hierarchical Clustering. Infotek: Jurnal Informatika Dan Teknologi, 7(2), 379–389. https://doi.org/10.29408/jit.v7i2.26016.

Heatubun, P. K., & Fansyuri, M. (2024). Analisa Data Mining Untuk Prediksi Penjualan Produk Menggunakan Algoritma FP-Growth Berbasis Web Studi Kasus Online Shop Muslim Galeri. 1(6), 1376–1382.

Istikomah, N., & Masruri, A. (2021). A Strategi Pengembangan Kompetensi Pustakawan di Dinas Perpustakaan dan Kearsipan Kabupaten Gunung Kidul. Baitul ’Ulum: Jurnal Ilmu Perpustakaan Dan Informasi, 5(1), 45–57. https://doi.org/10.30631/baitululum.v5i1.107.

Karolina, N. (2021). Data Mining Pengelompokan Pasien Rawat Inap Peserta BPJS Menggunakan Metode Clustering (Studi Kasus : RSU.Bangkatan). Journal of Information and Technology, 1(2), 47–53. https://doi.org/10.32938/jitu.v1i2.1470.

Nur, A. muliawan, Saiful2, M., Bahtiar, H., & Muhammad Taufik Hidayat. (2024). Penerapan Algoritma K-Means Clustering Dalam Mengelompokkan Smartphone Yang Rekomendasi Berdasarkan Spesifikasi. Infotek: Jurnal Informatika Dan Teknologi, 7(2), 478–488. https://doi.org/10.29408/jit.v7i2.26283.

Nurhidayati, N., Mauliya, L., & Suhartini, S. (2023). Clustering Data Pasien Covid Berdasarkan Usia dan Gejala Menggunakan Algoritma K-Means. Infotek : Jurnal Informatika Dan Teknologi, 6(2), 443–452. https://doi.org/10.29408/jit.v6i2.17488.

Nur Ika Royanti, & Ismanto, B. (2020). Pengelompokkan keaktifan peminjaman buku di perpustakaan stmik widya pratama dengan metode k-means nur. Xv(1), 53–54.

Sahputra, M. I., Triayudi, A., & Rubhasy, A. (2022). Analisis Faktor Yang Mempengaruhi Penumpang Angkutan Umum Beralih Ke Transportasi Online Go-Jek Menggunakan Metode K-Means Clustering. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 6(1), 63–69. https://doi.org/10.35870/jtik.v6i1.381.

Sholikhah, N. A. (2022). Studi Perbandingan Clustering Kecamatan di Kabupaten Bojonegoro Berdasarkan Keaktifan Penduduk Dalam Kepemilikan Dokumen Kependudukan. Jurnal Statistika Dan Komputasi, 1(1), 42–53. https://doi.org/10.32665/statkom.v1i1.443.

Tendean, T., & Purba, W. (2020). Analisis Cluster Provinsi Indonesia Berdasarkan Produksi Bahan Pangan Menggunakan Algoritma K-Means. Jurnal Sains Dan Teknologi), 1(2), 5–11.

Triandini, M., Defit, S., & Nurcahyo, G. W. (2021). Data Mining dalam Mengukur Tingkat Keaktifan Siswa dalam Mengikuti Proses Belajar pada SMP IT Andalas Cendekia. Jurnal Informasi Dan Teknologi, 3, 167–173. https://doi.org/10.37034/jidt.v3i3.120.

Yuanti, A. H. (2024). Analisis Pengaruh Covid-19 Terhadap Kesehatan Mental dengan Visualisasi Data Rapidminer. Gudang Jurnal Multidisiplin Ilmu, 2, 183–187.

Widyayanti, E. R., & Insiatiningsih, I. (2021). Jurnal Riset Manajemen Sekolah Tinggi Ilmu Ekonomi Widya Wiwaha Program Magister Manajemen, 8(1), 80–95. https://doi.org/10.32477/jrm.v8i1.249.

Downloads

Published

20-01-2025

How to Cite

Sulaiman, H., Yuri Yuliani, Kukuh Panggalih, M. Iqbal Alifudin, & Kudiantoro Widianto. (2025). Pengelompokan Keaktifan Anggota Perpustakaan Menggunakan Algoritma K-Means. Infotek: Jurnal Informatika Dan Teknologi, 8(1), 56–65. https://doi.org/10.29408/jit.v8i1.27978

Similar Articles

<< < 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.